Morphological Semigroups and Scale-Spaces on Ultrametric Spaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)

Abstract

Ultrametric spaces are the natural mathematical structure to deal with data embedded into a hierarchical representation. This kind of representations is ubiquitous in morphological image processing, from pyramids of nested partitions to more abstract dendrograms from minimum spanning trees. This paper is a formal study of morphological operators for functions defined on ultrametric spaces. First, the notion of ultrametric structuring function is introduced. Then, using as basic ingredient the convolution in (max,min)-algebra, the multi-scale ultrametric dilation and erosion are defined and their semigroup properties are stated. It is proved in particular that they are idempotent operators and consequently they are algebraically ultrametric closing and opening too. Some preliminary examples illustrate the behavior and practical interest of ultrametric dilations/erosions.

Keywords

Ultrametric space Ultrametric semigroup Idempotent operator (max min)-convolution 

References

  1. 1.
    Angulo, J., Velasco-Forero, S.: Riemannian mathematical morphology. Pattern Recogn. Lett. 47, 93–101 (2014)CrossRefMATHGoogle Scholar
  2. 2.
    Angulo, J.: Convolution in (max, min)-algebra and its role in mathematical morphology. hal-01108121, 59 p. (2014)Google Scholar
  3. 3.
    Angulo, J.: Morphological PDE and dilation/erosion semigroups on length spaces. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 509–521. Springer, Cham (2015). doi:10.1007/978-3-319-18720-4_43 CrossRefGoogle Scholar
  4. 4.
    Bendikov, A., Grigor’yan, A., Pittet, C.: On a class of Markov semigroups on discrete ultra-metric spaces. Potential Anal. 37(2), 125–169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bendikov, A., Grigor’yan, A., Pittet, C., Woess, W.: Isotropic Markov semigroups on ultrametric spaces. Uspekhi Mat. Nauk 69(4), 3–102 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Meyer, F.: Hierarchies of partitions and morphological segmentation. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 161–182. Springer, Heidelberg (2001). doi:10.1007/3-540-47778-0_14 CrossRefGoogle Scholar
  7. 7.
    Meyer, F., Stawiaski, J.: Morphology on graphs and minimum spanning trees. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 161–170. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03613-2_15 CrossRefGoogle Scholar
  8. 8.
    Meyer, F.: Adjunctions on the lattice of dendrograms. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 91–100. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38221-5_10 CrossRefGoogle Scholar
  9. 9.
    Meyer, F.: Flooding edge or node weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 341–352. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_29 CrossRefGoogle Scholar
  10. 10.
    Meyer, F.: Watersheds on weighted graphs. Pattern Recogn. Lett. 47, 72–79 (2014)CrossRefGoogle Scholar
  11. 11.
    Meyer, F.: The waterfall hierarchy on weighted graphs. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 325–336. Springer, Cham (2015). doi:10.1007/978-3-319-18720-4_28 CrossRefGoogle Scholar
  12. 12.
    Murtagh, F., Downs, G., Contreras, P.: Hierarchical clustering of massive, high dimensional data sets by exploiting ultrametric embedding. SIAM J. Sci. Comput. 30(2), 707–730 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_12 CrossRefGoogle Scholar
  14. 14.
    Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22(1), 167–210 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)CrossRefGoogle Scholar
  16. 16.
    Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CMM-Centre de Morphologie MathématiqueMINES ParisTech, PSL-Research UniversityFontainebleauFrance

Personalised recommendations