Advertisement

Connected Morphological Attribute Filters on Distributed Memory Parallel Machines

  • Jan J. Kazemier
  • Georgios K. Ouzounis
  • Michael H. F. Wilkinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)

Abstract

We present a new algorithm for attribute filtering of extremely large images, using a forest of modified max-trees, suitable for distributed memory parallel machines. First, max-trees of tiles of the image are computed, after which messages are exchanged to modify the topology of the trees and update attribute data, such that filtering the modified trees on each tile gives exactly the same results as filtering a regular max-tree of the entire image. On a cluster, a speed-up of up to 53\(\times \) is obtained on 64, and up to 100\(\times \) on 128 single CPU nodes. On a shared memory machine a peak speed-up of 50\(\times \) on 64 cores was obtained.

Keywords

Shared Memory Attribute Filter Merging Algorithm Communication Load Morphological Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster. The 64 core Opteron machine was obtained by funding for the HyperGAMMA project from the Netherlands Organisation for Scientific Research (NWO) under project number 612.001.110.

References

  1. 1.
    Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)CrossRefGoogle Scholar
  2. 2.
    Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Sig. Process. Mag. 26(6), 136–157 (2009)CrossRefGoogle Scholar
  3. 3.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  4. 4.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  5. 5.
    Pesaresi, M., Benediktsson, J.: Image segmentation based on the derivative of the morphological profile. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and Its Applications to Image and Signal Processing, vol. 18, pp. 179–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007)CrossRefGoogle Scholar
  7. 7.
    Ouzounis, G.K., Soille, P.: Differential area profiles. In: Proceedings of the 2010 20th International Conference on Pattern Recognition, pp. 4085–4088. IEEE Computer Society(2010)Google Scholar
  8. 8.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters on shared memory parallel machines. IEEE Trans. Pattern Anal. Mac. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  9. 9.
    Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Matas, P., Dokládalová, E., Akil, M., Grandpierre, T., Najman, L., Poupa, M., Georgiev, V.: Parallel algorithm for concurrent computation of connected component tree. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 230–241. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88458-3_21 CrossRefGoogle Scholar
  11. 11.
    Wilkinson, M.H.F., Soille, P., Pesaresi, M., Ouzounis, G.K.: Concurrent computation of differential morphological profiles on giga-pixel images. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 331–342. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21569-8_29 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jan J. Kazemier
    • 1
  • Georgios K. Ouzounis
    • 2
  • Michael H. F. Wilkinson
    • 1
  1. 1.Johann Bernoulli InstituteUniversity of GroningenGroningenThe Netherlands
  2. 2.DigitalGlobe, Inc.WestminsterUSA

Personalised recommendations