Advertisement

Quasi-Flat Zones for Angular Data Simplification

  • Erchan Aptoula
  • Minh-Tan Pham
  • Sébastien Lefèvre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)

Abstract

Quasi-flat zones are based on the constrained connectivity paradigm and they have proved to be effective tools in the context of image simplification and super-pixel creation. When stacked, they form successive levels of the \(\alpha \)- or \(\omega \)-tree powerful representations. In this paper we elaborate on their extension to angular data, whose periodicity prevents the direct application of grayscale quasi-flat zone definitions. Specifically we study two approaches in this regard, respectively based on reference angles and angular distance computations. The proposed methods are tested both qualitatively and quantitatively on a variety of angular data, such as hue images, texture orientation fields and optical flow images. The results indicate that quasi-flat zones constitute an effective means of simplifying angular data, and support future work on angular tree-based representations.

Keywords

Quasi-flat zones Image partition Image segmentation Connectivity Orientation field Hue Optical flow 

References

  1. 1.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)CrossRefGoogle Scholar
  2. 2.
    Serra, J.: Connectivity for sets and functions. Fundamenta Informaticae 41, 147–186 (2000)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Meyer, F.: The levelings. In: Proceedings of ISMM (1998)Google Scholar
  4. 4.
    Cousty, J., Laurent, N., Yukiko, K., Silvio, G.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. Technical report, LIGM (2016)Google Scholar
  5. 5.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comp. Graph. Image Proc. 10, 195–223 (1979)CrossRefGoogle Scholar
  6. 6.
    Hambrusch, S., He, X., Miller, R.: Parallel algorithms for gray-scale digitized picture component labeling on a mesh-connected computer. J. Parallel Distrib. Comput. 20, 56–58 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. PAMI 30, 1132–1145 (2008)CrossRefGoogle Scholar
  8. 8.
    Aptoula, E., Weber, J., Lefèvre, S.: Vectorial quasi-flat zones for color image simplification. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 231–242. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38294-9_20 CrossRefGoogle Scholar
  9. 9.
    Angulo, J., Serra, J.: Color segmentation by ordered mergings. In: Proceedings of ICIP (2003)Google Scholar
  10. 10.
    Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: a general low-level region merging segmentation method. Signal Process. 62, 37–60 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Weber, J., Lefèvre, S., Gançarski, P.: Interactive video segmentation based on quasi-flat zones. In: Proceedings of ISPA (2011)Google Scholar
  12. 12.
    Aptoula, E.: The impact of multivariate quasi-flat zones on the morphological description of hyperspectral images. Int. J. Remote Sens. 35(10), 3482–3498 (2014)CrossRefGoogle Scholar
  13. 13.
    Aptoula, E., Lefèvre, S.: On the morphological processing of hue. Image Vis. Comput. 27, 1394–1401 (2009)CrossRefGoogle Scholar
  14. 14.
    Hanbury, A., Serra, J.: Morphological operators on the unit circle. IEEE Trans. Image Process. 10, 1842–1850 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Baker, S., Lewis, D.S.J.P., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comp. Vis. 92, 1–31 (2011)CrossRefGoogle Scholar
  16. 16.
    Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21569-8_10 CrossRefGoogle Scholar
  17. 17.
    Ouzounis, G.K., Soille, P.: The alpha-tree algorithm. JRC Scientific and Policy Report (2012)Google Scholar
  18. 18.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Proceedings of ICIAP (2007)Google Scholar
  19. 19.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of ICCV (2001)Google Scholar
  20. 20.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex: new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of ICPR (2002)Google Scholar
  21. 21.
    Carleer, A., Debeir, O., Wolff, E.: Assessment of very high spatial resolution satellite image segmentations. Photogram. Eng. Remote Sens. 71, 1285–1294 (2005)CrossRefGoogle Scholar
  22. 22.
    Derivaux, S., Forestier, G., Wemmert, C., Lefèvre, S.: Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation. Pattern Recogn. Lett. 31, 2364–2374 (2010)CrossRefGoogle Scholar
  23. 23.
    Hanbury, A., Serra, J.: Analysis of oriented textures using mathematical morphology. In: Proceedings of Workshop Austrian Assian for Pattern Recognition (2002)Google Scholar
  24. 24.
    Havel, J., Merciol, F., Lefèvre, S.: Efficient tree construction for multiscale image representation and processing. J. Real Time Image Process. 1–18 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Erchan Aptoula
    • 1
  • Minh-Tan Pham
    • 2
  • Sébastien Lefèvre
    • 2
  1. 1.Institute of Information Technologies - Gebze Technical UniversityKocaeliTurkey
  2. 2.IRISA - Université Bretagne Sud, UMR 6074VannesFrance

Personalised recommendations