Advertisement

Matrix-Valued Levelings for Colour Images

  • Michael BreußEmail author
  • Laurent Hoeltgen
  • Andreas Kleefeld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10225)

Abstract

Morphological levelings represent a useful tool for the decomposition of an image into cartoon and texture components. Moreover, they can be used to construct a morphological scale space. However, the classic construction of levelings is limited to the use of grey scale images, since an ordering of pixel values is required.

In this paper we propose an extension of morphological levelings to colour images. To this end, we consider the formulation of colour images as matrix fields and explore techniques based on the Loewner order for formulating morphological levelings in this setting. Using the matrix-valued colours we study realisations of levelings relying on both the completely discrete construction and the formulation using a partial differential equation. Experimental results confirm the potential of our matrix-based approaches for analysing texture in colour images and for extending the range of applications of levelings in a convenient way to colour image processing.

Keywords

Mathematical morphology Dilation Erosion Loewner order Leveling 

References

  1. 1.
    Agoston, M.: Computer Graphics and Geometric Modeling: Implementation and Algorithms. Springer, London (2005)zbMATHGoogle Scholar
  2. 2.
    Aptoula, E., Lefévre, S.: A comparative study on multivariate mathematical morphology. Pattern Recogn. 40(11), 2914–2929 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boroujerdi, A.S., Breuß, M., Burgeth, B., Kleefeld, A.: PDE-based color morphology using matrix fields. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 461–473. Springer, Cham (2015). doi: 10.1007/978-3-319-18461-6_37 Google Scholar
  4. 4.
    Burgeth, B., Kleefeld, A.: Morphology for color images via Loewner order for matrix fields. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 243–254. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38294-9_21 CrossRefGoogle Scholar
  5. 5.
    Crespo, J.: Adjacency stable connected operators and set levelings. Image Vis. Comput. 28(10), 1483–1490 (2010)CrossRefGoogle Scholar
  6. 6.
    Crespo, J., Serra, J., Schafer, R.: Image segmentation using connected filters. In: Serra, J., Salembier, P. (eds.) Workshop on Mathematical Morphology, pp. 52–57 (1993)Google Scholar
  7. 7.
    van de Gronde, J., Roerdink, J.: Group-invariant colour morphology based on frames. IEEE Trans. Image Process. 23, 1276–1288 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Higham, N.: Functions of Matrices. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kleefeld, A., Breuß, M., Welk, M., Burgeth, B.: Adaptive filters for color images: median filtering and its extensions. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 149–158. Springer, Cham (2015). doi: 10.1007/978-3-319-15979-9_15 CrossRefGoogle Scholar
  10. 10.
    Kleefeld, A., Burgeth, B.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recogn. Lett. 47, 29–39 (2014)CrossRefGoogle Scholar
  11. 11.
    Lerallut, R., Decenciére, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)CrossRefGoogle Scholar
  12. 12.
    Maragos, P.: Algebraic and PDE approaches for lattice scale-spaces with global constraints. Int. J. Comput. Vision 52(2–3), 121–137 (2003)CrossRefGoogle Scholar
  13. 13.
    Maragos, P., Evangelopoulos, G.: Leveling cartoons, texture energy markers, and image decomposition. In: Proceedings of ISMM, pp. 125–138. MCT/INPE (2007)Google Scholar
  14. 14.
    Meyer, F.: The levelings. In: Proceedings of the ISMM. Kluwer Academic Publishers (1998)Google Scholar
  15. 15.
    Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(2), 245–265 (2000)CrossRefGoogle Scholar
  16. 16.
    Pizarro, L., Burgeth, B., Breuß, M., Weickert, J.: A directional Rouy-Tourin scheme for adaptive matrix-valued morphology. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 250–260. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03613-2_23 CrossRefGoogle Scholar
  17. 17.
    Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Welk, M., Kleefeld, A., Breuß, M.: Quantile filtering of colour images via symmetric matrices. Math. Morphol. - Theory Appl. 1, 136–174 (2016)Google Scholar
  19. 19.
    Welk, M., Kleefeld, A., Breuß, M.: Non-adaptive and amoeba quantile filters for colour images. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 398–409. Springer, Cham (2015). doi: 10.1007/978-3-319-18720-4_34 CrossRefGoogle Scholar
  20. 20.
    Zanoguera, F., Meyer, F.: On the implementation of non-separable vector levelings. In: Talbot, H., Beare, R. (eds.) Proc. ISMM. CSIRO Publishing (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Breuß
    • 1
    Email author
  • Laurent Hoeltgen
    • 1
  • Andreas Kleefeld
    • 2
  1. 1.Institute for MathematicsBrandenburg Technical UniversityCottbusGermany
  2. 2.Forschungszentrum Jülich, Institute for Advanced Simulation, Jülich Supercomputing CentreJülichGermany

Personalised recommendations