Traumatic Brain Injury as a Trigger of Neurodegeneration

  • Victoria E. Johnson
  • William Stewart
  • John D. Arena
  • Douglas H. Smith
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 15)


Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative “dose” of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.


Traumatic brain injury (TBI) Chronic traumatic encephalopathy (CTE) Tau Amyloid beta Diffuse axonal injury (DAI) 



Alzheimer’s disease


Amyotrophic lateral sclerosis


Amyloid precursor protein



Cavum septum pellucidum


Chronic traumatic encephalopathy


Diffuse axonal injury


Dementia pugilistica


mild TBI


Neurofibrillary tangle


Positron emission tomography


Traumatic brain injury


43 kDa transactive response DNA binding protein


  1. 1.
    Coronado VG, Xu L, Basavaraju SV et al (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997-2007. Morb Mortal Wkly Rep Surveill Summ 60(5):1–32Google Scholar
  2. 2.
    Faul MXL, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta (GA)CrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention (CDC) NCfIPaC (1999) Traumatic brain injury in the United States—a report to congress. Centers for Disease Control and Prevention, Atlanta (GA)Google Scholar
  4. 4.
    Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9(4):211–221PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Control CfD (2016) Percent distributions of TBI-related emergency department visits by age group and injury mechanism—United States, 2006–2010.
  6. 6.
    Graham DG, Gennarelli TA, TK MI (2002) Greenfield’s neuropathology, vol Vol 1, 7th edn. Arnold, LondonGoogle Scholar
  7. 7.
    Meaney DF, Smith DH, Shreiber DI et al (1995) Biomechanical analysis of experimental diffuse axonal injury. J Neurotrauma 12(4):689–694PubMedCrossRefGoogle Scholar
  8. 8.
    Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15(1):49–59PubMedCrossRefGoogle Scholar
  9. 9.
    Adams JH, Graham DI, Gennarelli TA, Maxwell WL (1991) Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry 54(6):481–483PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Adams JH, Graham DI, Murray LS, Scott G (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12(6):557–563PubMedCrossRefGoogle Scholar
  11. 11.
    Graham DI, Adams JH, Nicoll JA, Maxwell WL, Gennarelli TA (1995) The nature, distribution and causes of traumatic brain injury. Brain Pathol 5(4):397–406PubMedCrossRefGoogle Scholar
  12. 12.
    Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43–59PubMedCrossRefGoogle Scholar
  13. 13.
    Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275(Pt 3):316–327PubMedCrossRefGoogle Scholar
  14. 14.
    McIntosh TK, Saatman KE, Raghupathi R et al (1998) The Dorothy Russell memorial lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24(4):251–267PubMedCrossRefGoogle Scholar
  15. 15.
    Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7(1):22–30PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH (2009) A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol 19(2):214–223PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136(Pt 1):28–42.Google Scholar
  18. 18.
    Johnson VE, Meaney DF, Cullen DK, Smith DH (2015) Animal models of traumatic brain injury. Handb Clin Neurol 127:115–128PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43PubMedCrossRefGoogle Scholar
  20. 20.
    Bazarian JJ, Zhong J, Blyth B, Zhu T, Kavcic V, Peterson D (2007) Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma 24(9):1447–1459PubMedCrossRefGoogle Scholar
  21. 21.
    Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 344(8929):1055–1056PubMedCrossRefGoogle Scholar
  22. 22.
    Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1995) Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12(4):565–572PubMedCrossRefGoogle Scholar
  23. 23.
    Mayer AR, Ling J, Mannell MV et al (2010) A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 74(8):643–650PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M (2008) Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj 22(2):115–122PubMedCrossRefGoogle Scholar
  25. 25.
    Wilde EA, McCauley SR, Hunter JV et al (2008) Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 70(12):948–955PubMedCrossRefGoogle Scholar
  26. 26.
    Yallampalli R, Wilde EA, Bigler ED et al (2013) Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. J Neuroimaging 23(2):224–227PubMedCrossRefGoogle Scholar
  27. 27.
    Eierud C, Craddock RC, Fletcher S et al (2014) Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage Clin 4:283–294PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Niogi SN, Mukherjee P, Ghajar J et al (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29(5):967–973PubMedCrossRefGoogle Scholar
  29. 29.
    Siman R, Giovannone N, Hanten G et al (2013) Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front Neurol 4:190PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH (2016) SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol 131(1):115–135PubMedCrossRefGoogle Scholar
  31. 31.
    Shahim P, Tegner Y, Wilson DH et al (2014) Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol 71(6):684–692PubMedCrossRefGoogle Scholar
  32. 32.
    Siman R, Shahim P, Tegner Y, Blennow K, Zetterberg H, Smith DH, Serum SNTF (2015) Increases in concussed professional ice hockey players and relates to the severity of Postconcussion symptoms. J Neurotrauma. In PressGoogle Scholar
  33. 33.
    Kraus JF, McArthur DL (1996) Epidemiologic aspects of brain injury. Neurol Clin 14(2):435–450PubMedCrossRefGoogle Scholar
  34. 34.
    Langlois JA, Rutland-Brown W, Tomas KE (2004) Traumatic brain injury in the United States: emergency department visits, hospitalization, and deaths. Centers for Disease Control and Prevention, National Center of Injury Prevention and Control, Atlanta, GAGoogle Scholar
  35. 35.
    Marshall LF (2000) Epidemiology and cost of central nervous system injury. Clin Neurosurg 46:105–112PubMedGoogle Scholar
  36. 36.
    Martland H (1928) Punch drunk. J Am Med Assoc 91:1103–1107CrossRefGoogle Scholar
  37. 37.
    Critchley M (1957) Medical aspects of boxing, particularly from a neurological standpoint. Br Med J 1(5015):357–362PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mawdsley C, Ferguson FR (1963) Neurological disease in boxers. Lancet 2(7312):799–801Google Scholar
  39. 39.
    Millspaugh J (1937) Dementia pugilistica. U S Nav Med Bull 35:297–303Google Scholar
  40. 40.
    Spillane JD (1962) Five boxers. Br Med J 2(5314):1205–1210PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Roberts A (1969) Brain damage in boxers: a study of the prevalence of traumatic encephalopathy among ex-professional boxers. Pitman, LondonGoogle Scholar
  42. 42.
    Jordan BD, Jahre C, Hauser WA et al (1992) CT of 338 active professional boxers. Radiology 185(2):509–512PubMedCrossRefGoogle Scholar
  43. 43.
    Jordan BD, Matser EJ, Zimmerman RD, Zazula T (1996) Sparring and cognitive function in professional boxers. Phys Sportsmed 24(5):87–98PubMedCrossRefGoogle Scholar
  44. 44.
    Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 82(4):321–326PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts GW, Whitwell HL, Acland PR, Bruton CJ (1990) Dementia in a punch-drunk wife. Lancet 335(8694):918–919PubMedCrossRefGoogle Scholar
  46. 46.
    Williams DJ, Tannenberg AE (1996) Dementia pugilistica in an alcoholic achondroplastic dwarf. Pathology 28(1):102–104PubMedCrossRefGoogle Scholar
  47. 47.
    Goldstein LE, Fisher AM, Tagge CA et al (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4(134):134ra160CrossRefGoogle Scholar
  48. 48.
    McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68(7):709–735PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    McKee AC, Gavett BE, Stern RA et al (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69(9):918–929PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Omalu B, Bailes J, Hamilton RL et al (2011) Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery 69(1):173–183. discussion 183PubMedCrossRefGoogle Scholar
  51. 51.
    Omalu BI, ST DK, Hamilton RL et al (2006) Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery 59(5):1086–1092. discussion 1092–1083PubMedCrossRefGoogle Scholar
  52. 52.
    Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH (2005) Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57(1):128–134. discussion 128–134PubMedCrossRefGoogle Scholar
  53. 53.
    Omalu BI, Fitzsimmons RP, Hammers J, Bailes J (2010) Chronic traumatic encephalopathy in a professional American wrestler. J Forensic Nurs 6(3):130–136PubMedCrossRefGoogle Scholar
  54. 54.
    Omalu BI, Hamilton RL, Kamboh MI, DeKosky ST, Bailes J (2010) Chronic traumatic encephalopathy (CTE) in a National Football League Player: case report and emerging medicolegal practice questions. J Forensic Nurs 6(1):40–46PubMedCrossRefGoogle Scholar
  55. 55.
    Stewart W, McNamara PH, Lawlor B, Hutchinson S, Farrell M (2016) Chronic traumatic encephalopathy: a potential late and under recognized consequence of rugby union? QJM 109(1):11–15PubMedCrossRefGoogle Scholar
  56. 56.
    Lehman EJ, Hein MJ, Baron SL, Gersic CM (2012) Neurodegenerative causes of death among retired National Football League players. Neurology 79(19):1970–1974PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Guskiewicz KM, Marshall SW, Bailes J et al (2005) Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 57(4):719–726. discussion 719–726PubMedCrossRefGoogle Scholar
  58. 58.
    McKee AC, Cairns NJ, Dickson DW et al (2016) The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131(1):75–86PubMedCrossRefGoogle Scholar
  59. 59.
    Dams-O'Connor K, Gibbons LE, Bowen JD, McCurry SM, Larson EB, Crane PK (2013) Risk for late-life re-injury, dementia and death among individuals with traumatic brain injury: a population-based study. J Neurol Neurosurg Psychiatry 84(2):177–182PubMedCrossRefGoogle Scholar
  60. 60.
    Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A (2003) Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 74(7):857–862PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Graves AB, White E, Koepsell TD et al (1990) The association between head trauma and Alzheimer’s disease. Am J Epidemiol 131(3):491–501PubMedCrossRefGoogle Scholar
  62. 62.
    Guo Z, Cupples LA, Kurz A et al (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54(6):1316–1323PubMedCrossRefGoogle Scholar
  63. 63.
    Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL (1990) Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9(5):233–242PubMedCrossRefGoogle Scholar
  64. 64.
    Mortimer JA, French LR, Hutton JT, Schuman LM (1985) Head injury as a risk factor for Alzheimer’s disease. Neurology 35(2):264–267PubMedCrossRefGoogle Scholar
  65. 65.
    Mortimer JA, van Duijn CM, Chandra V et al (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 20(Suppl 2):S28–S35PubMedCrossRefGoogle Scholar
  66. 66.
    O'Meara ES, Kukull WA, Sheppard L et al (1997) Head injury and risk of Alzheimer’s disease by apolipoprotein E genotype. Am J Epidemiol 146(5):373–384PubMedCrossRefGoogle Scholar
  67. 67.
    Plassman BL, Havlik RJ, Steffens DC et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55(8):1158–1166PubMedCrossRefGoogle Scholar
  68. 68.
    Salib E, Hillier V (1997) Head injury and the risk of Alzheimer’s disease: a case control study. Int J Geriatr Psychiatry 12(3):363–368PubMedCrossRefGoogle Scholar
  69. 69.
    Schofield PW, Tang M, Marder K et al (1997) Alzheimer’s disease after remote head injury: an incidence study. J Neurol Neurosurg Psychiatry 62(2):119–124PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Amaducci LA, Fratiglioni L, Rocca WA et al (1986) Risk factors for clinically diagnosed Alzheimer’s disease: a case-control study of an Italian population. Neurology 36(7):922–931PubMedCrossRefGoogle Scholar
  71. 71.
    Broe GA, Henderson AS, Creasey H et al (1990) A case-control study of Alzheimer’s disease in Australia. Neurology 40(11):1698–1707PubMedCrossRefGoogle Scholar
  72. 72.
    Chandra V, Philipose V, Bell PA, Lazaroff A, Schoenberg BS (1987) Case-control study of late onset “probable Alzheimer’s disease”. Neurology 37(8):1295–1300PubMedCrossRefGoogle Scholar
  73. 73.
    Ferini-Strambi L, Smirne S, Garancini P, Pinto P, Franceschi M (1990) Clinical and epidemiological aspects of Alzheimer’s disease with presenile onset: a case control study. Neuroepidemiology 9(1):39–49PubMedCrossRefGoogle Scholar
  74. 74.
    Katzman R, Aronson M, Fuld P et al (1989) Development of dementing illnesses in an 80-year-old volunteer cohort. Ann Neurol 25(4):317–324PubMedCrossRefGoogle Scholar
  75. 75.
    Launer LJ, Andersen K, Dewey ME et al (1999) Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European studies of dementia. Neurology 52(1):78–84PubMedCrossRefGoogle Scholar
  76. 76.
    Mehta KM, Ott A, Kalmijn S et al (1999) Head trauma and risk of dementia and Alzheimer’s disease: the Rotterdam study. Neurology 53(9):1959–1962PubMedCrossRefGoogle Scholar
  77. 77.
    van Duijn CM, Tanja TA, Haaxma R et al (1992) Head trauma and the risk of Alzheimer’s disease. Am J Epidemiol 135(7):775–782PubMedCrossRefGoogle Scholar
  78. 78.
    Williams DB, Annegers JF, Kokmen E, O'Brien PC, Kurland LT (1991) Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 41(10):1554–1557PubMedCrossRefGoogle Scholar
  79. 79.
    Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K (2014) Dementia risk after traumatic brain injury vs Nonbrain trauma: the role of age and severity. JAMA Neurol 71(12):1490–1497PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gedye A, Beattie BL, Tuokko H, Horton A, Korsarek E (1989) Severe head injury hastens age of onset of Alzheimer’s disease. J Am Geriatr Soc 37(10):970–973PubMedCrossRefGoogle Scholar
  81. 81.
    Nemetz PN, Leibson C, Naessens JM et al (1999) Traumatic brain injury and time to onset of Alzheimer’s disease: a population-based study. Am J Epidemiol 149(1):32–40PubMedCrossRefGoogle Scholar
  82. 82.
    Sullivan P, Petitti D, Barbaccia J (1987) Head trauma and age of onset of dementia of the Alzheimer type. JAMA 257(17):2289–2290PubMedCrossRefGoogle Scholar
  83. 83.
    Brandenburg W, Hallervorden J (1954) Dementia pugilistica with anatomical findings. Virchows Arch 325(6):680–709PubMedCrossRefGoogle Scholar
  84. 84.
    Constantinidis J, Tissot R (1967) Generalized Alzheimer’s neurofibrillary lesions without senile plaques (presentation of one anatomo-clinical case). Schweiz Arch Neurol Neurochir Psychiatr 100(1):117–130PubMedGoogle Scholar
  85. 85.
    Ferguson FR, Mawdsley C. (1965) Chronic encephalopathy in boxers: 8th international congress of neurology, Vienna, vol 1. Wiener Medizinischen Akademie, ViennaGoogle Scholar
  86. 86.
    Grahmann H, Ule G (1957) Diagnosis of chronic cerebral symptoms in boxers (dementia pugilistica & traumatic encephalopathy of boxers). Psychiatr Neurol (Basel) 134(3-4):261–283CrossRefGoogle Scholar
  87. 87.
    Neubuerger KT, Sinton DW, Denst J (1959) Cerebral atrophy associated with boxing. AMA Arch Neurol Psychiatry 81(4):403–408PubMedCrossRefGoogle Scholar
  88. 88.
    Payne EE (1968) Brains of boxers. Neurochirurgia (Stuttg) 11(5):173–188Google Scholar
  89. 89.
    Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3(3):270–303PubMedCrossRefGoogle Scholar
  90. 90.
    Allsop D, Haga S, Bruton C, Ishii T, Roberts GW (1990) Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid beta-protein of Alzheimer’s disease. Am J Pathol 136(2):255–260PubMedPubMedCentralGoogle Scholar
  91. 91.
    Drachman D, Newall K (1999) Case 12-1999—a 67-year-old man with three years of dementia. N Engl J Med 340:1269–1277CrossRefGoogle Scholar
  92. 92.
    Geddes JF, Vowles GH, Nicoll JA, Revesz T (1999) Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol 98(2):171–178PubMedCrossRefGoogle Scholar
  93. 93.
    Hof PR, Bouras C, Buee L, Delacourte A, Perl DP, Morrison JH (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85(1):23–30PubMedCrossRefGoogle Scholar
  94. 94.
    Jordan BD, Kanik AB, Horwich MS et al (1995) Apolipoprotein E epsilon 4 and fatal cerebral amyloid angiopathy associated with dementia pugilistica. Ann Neurol 38(4):698–699PubMedCrossRefGoogle Scholar
  95. 95.
    Nowak LA, Smith GG, Reyes PF (2009) Dementia in a retired world boxing champion: case report and literature review. Clin Neuropathol 28(4):275–280PubMedGoogle Scholar
  96. 96.
    Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53(5):373–378PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Saing T, Dick M, Nelson PT, Kim RC, Cribbs DH, Head E (2012) Frontal cortex neuropathology in dementia pugilistica. J Neurotrauma 29(6):1054–1070PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Schmidt ML, Zhukareva V, Newell KL, Lee VM, Trojanowski JQ (2001) Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol (Berl) 101(5):518–524Google Scholar
  99. 99.
    Casson IR, Siegel O, Sham R, Campbell EA, Tarlau M, DiDomenico A (1984) Brain damage in modern boxers. JAMA 251(20):2663–2667PubMedCrossRefGoogle Scholar
  100. 100.
    Bodensteiner JB, Schaefer GB (1997) Dementia pugilistica and cavum septi pellucidi: born to box? Sports Med 24(6):361–365PubMedCrossRefGoogle Scholar
  101. 101.
    Bogdanoff B, Natter HM (1989) Incidence of cavum septum pellucidum in adults: a sign of boxer’s encephalopathy. Neurology 39(7):991–992PubMedCrossRefGoogle Scholar
  102. 102.
    Haglund Y, Bergstrand G (1990) Does Swedish amateur boxing lead to chronic brain damage? 2. A retrospective study with CT and MRI. Acta Neurol Scand 82(5):297–302PubMedCrossRefGoogle Scholar
  103. 103.
    Macpherson P, Teasdale E (1988) CT demonstration of a 5th ventricle—a finding to KO boxers? Neuroradiology 30(6):506–510PubMedCrossRefGoogle Scholar
  104. 104.
    Schwidde JT (1952) Incidence of cavum septi pellucidi and cavum Vergae in 1,032 human brains. AMA Arch Neurol Psychiatry 67(5):625–632PubMedCrossRefGoogle Scholar
  105. 105.
    Koerte IK, Hufschmidt J, Muehlmann M et al (2016) Cavum septi pellucidi in symptomatic former professional football players. J Neurotrauma 33(4):346–353PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136(1):28–42PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Areza-Fegyveres R, Rosemberg S, Castro RM et al (2007) Dementia pugilistica with clinical features of Alzheimer’s disease. Arq Neuropsiquiatr 65(3B):830–833PubMedCrossRefGoogle Scholar
  108. 108.
    Farbota KD, Sodhi A, Bendlin BB et al (2012) Longitudinal volumetric changes following traumatic brain injury: a tensor-based Morphometry study. J Int Neuropsychol Soc 18(6):1–13CrossRefGoogle Scholar
  109. 109.
    Ross DE (2011) Review of longitudinal studies of MRI brain volumetry in patients with traumatic brain injury. Brain Inj 25(13-14):1271–1278PubMedCrossRefGoogle Scholar
  110. 110.
    Ross DE, Ochs AL, Seabaugh JM et al (2012) Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain Inj 26(12):1500–1509PubMedCrossRefGoogle Scholar
  111. 111.
    Tomaiuolo F, Carlesimo GA, Di Paola M et al (2004) Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study. J Neurol Neurosurg Psychiatry 75(9):1314–1322PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Omalu B, Hammers JL, Bailes J et al (2011) Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurg Focus 31(5):E3PubMedCrossRefGoogle Scholar
  113. 113.
    Geddes JF, Vowles GH, Robinson SF, Sutcliffe JC (1996) Neurofibrillary tangles, but not Alzheimer-type pathology, in a young boxer. Neuropathol Appl Neurobiol 22(1):12–16PubMedCrossRefGoogle Scholar
  114. 114.
    McKee AC, Stein TD, Nowinski CJ et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain J Neurol 136(Pt 1):43–64CrossRefGoogle Scholar
  115. 115.
    Smith C, Graham DI, Murray LS, Nicoll JA (2003) Tau immunohistochemistry in acute brain injury. Neuropathol Appl Neurobiol 29(5):496–502PubMedCrossRefGoogle Scholar
  116. 116.
    Johnson VE, Stewart W, Smith DH (2011) Widespread Tau and amyloid-Beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22(2):142–149PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tokuda T, Ikeda S, Yanagisawa N, Ihara Y, Glenner GG (1991) Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid beta-protein and tau protein. Acta Neuropathol (Berl) 82(4):280–285CrossRefGoogle Scholar
  118. 118.
    Dale GE, Leigh PN, Luthert P, Anderton BH, Roberts GW (1991) Neurofibrillary tangles in dementia pugilistica are ubiquitinated. J Neurol Neurosurg Psychiatry 54(2):116–118PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Stein TD, Montenigro PH, Alvarez VE et al (2015) Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol 130(1):21–34PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361–370PubMedPubMedCentralGoogle Scholar
  121. 121.
    Huber AGK, Kelemen J, Cervod-Navarro J (1993) Desity of amyloid plaques in brains after head trauma. J Neurotrauma 10(Suppl):S180Google Scholar
  122. 122.
    Ikonomovic MD, Uryu K, Abrahamson EE et al (2004) Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190(1):192–203PubMedCrossRefGoogle Scholar
  123. 123.
    Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) Beta A4 amyloid protein deposition in brain after head trauma. Lancet 338(8780):1422–1423PubMedCrossRefGoogle Scholar
  124. 124.
    Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4):419–425PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH (2004) Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 165(2):357–371PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Iwata A, Chen XH, McIntosh TK, Browne KD, Smith DH (2002) Long-term accumulation of amyloid-beta in axons following brain trauma without persistent upregulation of amyloid precursor protein genes. J Neuropathol Exp Neurol 61(12):1056–1068PubMedCrossRefGoogle Scholar
  127. 127.
    Smith DH, Chen XH, Iwata A, Graham DI (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 98(5):1072–1077PubMedCrossRefGoogle Scholar
  128. 128.
    Stone JR, Okonkwo DO, Singleton RH, Mutlu LK, Helm GA, Povlishock JT (2002) Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. J Neurotrauma 19(5):601–614PubMedCrossRefGoogle Scholar
  129. 129.
    Tran HT, LaFerla FM, Holtzman DM, Brody DL (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-beta accumulation and independently accelerates the development of tau abnormalities. J Neurosci Off J Soc Neurosci 31(26):9513–9525CrossRefGoogle Scholar
  130. 130.
    Tran HT, Sanchez L, Esparza TJ, Brody DL (2011) Distinct temporal and anatomical distributions of amyloid-beta and tau abnormalities following controlled cortical impact in transgenic mice. PLoS One 6(9):e25475PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133PubMedCrossRefGoogle Scholar
  132. 132.
    Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6(4):211–220PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 256(8):1205–1214PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66(2):180–189PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64(10):1388–1394PubMedCrossRefGoogle Scholar
  136. 136.
    Johnson VE, Stewart W, Trojanowski JQ, Smith DH (2011) Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol 122(6):715–726PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    King A, Sweeney F, Bodi I, Troakes C, Maekawa S, Al-Sarraj S (2010) Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer’s disease. Neuropathology 30(4):408–419PubMedCrossRefGoogle Scholar
  138. 138.
    Moisse K, Mepham J, Volkening K, Welch I, Hill T, Strong MJ (2009) Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL−/− mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res 1296:176–186PubMedCrossRefGoogle Scholar
  139. 139.
    Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ (2009) Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res 1249:202–211PubMedCrossRefGoogle Scholar
  140. 140.
    Sato T, Takeuchi S, Saito A et al (2009) Axonal ligation induces transient redistribution of TDP-43 in brainstem motor neurons. Neuroscience 164(4):1565–1578PubMedCrossRefGoogle Scholar
  141. 141.
    Mann DM, Yates PO, Hawkes J (1983) The pathology of the human locus ceruleus. Clin Neuropathol 2(1):1–7PubMedGoogle Scholar
  142. 142.
    Maxwell WL, Dhillon K, Harper L et al (2003) There is differential loss of pyramidal cells from the human hippocampus with survival after blunt head injury. J Neuropathol Exp Neurol 62(3):272–279PubMedCrossRefGoogle Scholar
  143. 143.
    Shaw K, MacKinnon MA, Raghupathi R, Saatman KE, McLntosh TK, Graham DI (2001) TUNEL-positive staining in white and grey matter after fatal head injury in man. Clin Neuropathol 20(3):106–112PubMedGoogle Scholar
  144. 144.
    Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham DI (2006) Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 65(5):478–488PubMedCrossRefGoogle Scholar
  145. 145.
    Williams S, Raghupathi R, MacKinnon MA, McIntosh TK, Saatman KE, Graham DI (2001) In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man. Acta Neuropathol 102(6):581–590PubMedCrossRefGoogle Scholar
  146. 146.
    Reichard RR, Smith C, Graham DI (2005) The significance of beta-APP immunoreactivity in forensic practice. Neuropathol Appl Neurobiol 31(3):304–313PubMedCrossRefGoogle Scholar
  147. 147.
    Strich SJ (1956) Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J Neurol Neurosurg Psychiatry 19(3):163–185PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gentleman SM, Leclercq PD, Moyes L et al (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 146(2-3):97–104PubMedCrossRefGoogle Scholar
  149. 149.
    Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7(4):366–377PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73(1):14–29PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383PubMedCrossRefGoogle Scholar
  152. 152.
    Adams CW, Bruton CJ (1989) The cerebral vasculature in dementia pugilistica. J Neurol Neurosurg Psychiatry 52(5):600–604PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Brettschneider J, Libon DJ, Toledo JB et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123(3):395–407PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Brettschneider J, Toledo JB, Van Deerlin VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7(6):e39216PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victoria E. Johnson
    • 1
  • William Stewart
    • 1
    • 2
    • 3
  • John D. Arena
    • 1
  • Douglas H. Smith
    • 1
  1. 1.Department of Neurosurgery, Penn Center for Brain Injury and RepairUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of NeuropathologyQueen Elizabeth University HospitalGlasgowUK
  3. 3.University of GlasgowGlasgowUK

Personalised recommendations