Dynamic Latency Sensitivity Recognition: An Application to Energy Saving

  • S. Al Haj Baddar
  • A. Merlo
  • M. Migliardi
  • F. Palmieri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10232)


In the world of connected everything, network attacks and cyber-security breaches may cause huge monetary damages and even endanger lives; hence, full sanitization of the Internet traffic is a real necessity. In this paper we will apply a dynamic statistical analysis to separate latency sensitive traffic from the latency insensitive one at the source. Then, we will calculate the energy savings that can be achieved by identifying and dropping all the unwanted portion of the latency insensitive traffic directly at the source. This value represents an upper-bound to the actual amount of energy that can be saved by applying our adaptive aggressive intrusion detection technique to latency insensitive traffic, in fact the actual value depends on the actual load of the network and its capability to spread the hunt for malicious packet among all the network nodes. The main contribution of this paper is to show that energy savings through aggressive intrusion detection may be achieved without burdening latency sensitive traffic with delays that may render it unusable, nonetheless, as a side effect of early removal of unwanted traffic from the network flows is to reduce the network load, the traffic reduction so obtained allows sanitizing even the latency sensitive traffic with a reduced risk of excessive delays due to resources allocation and traffic forecasting errors.


Dynamic traffic classification Network greenification Aggressive intrusion detection Distributed intrusion detection 


  1. 1.
    Ashfaq, R.A.R., Wang, X.-Z., Huang, J.Z., Abbas, H., He, Y.-L.: Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–497 (2017)CrossRefGoogle Scholar
  2. 2.
    Al-Haj Baddar, S.W., Mauro, A., Migliardi, M.: SKETURE: a sketch-based packet analysis tool. In: Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats, MIST 2015, Denver, Colorado, USA, October 16, pp. 67–70 (2015)Google Scholar
  3. 3.
    Al-Haj Baddar, S.W., Merlo, A., Migliardi, M.: Generating statistical insights into network behavior using SKETURE. J. High Speed Netw. 22(1), 65–76 (2016)CrossRefGoogle Scholar
  4. 4.
    Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutorials 16(1), 303–336 (2014)CrossRefGoogle Scholar
  5. 5.
    Lan, K.C., Hussain, A., Dutta, D.: Effect of malicious traffic on the network (2003)Google Scholar
  6. 6.
    Desale, K.S., Kumathekar, C.N., Chavan, A.P.: Efficient intrusion detection system using stream data mining classification technique. In: 2015 International Conference on Computing Communication Control and Automation, pp. 469–473, February 2015Google Scholar
  7. 7.
    Hassanzadeh, A., Altaweel, A., Stoleru, R.: Traffic-and-resource-aware intrusion detection in wireless mesh networks. Ad Hoc Netw. 21, 18–41 (2014)CrossRefGoogle Scholar
  8. 8.
    Ji, S.-Y., Jeong, B.-K., Choi, S., Jeong, D.H.: A multi-level intrusion detection method for abnormal network behaviors. J. Netw. Comput. Appl. 62, 9–17 (2016)CrossRefGoogle Scholar
  9. 9.
    Leder, F., Werner, T., Martini, P.: Proactive botnet countermeasures - an offensive approach. In: Cooperative Cyber Defence Centre of Excellence (2009)Google Scholar
  10. 10.
    Liao, H.-J., Lin, C.-H.R., Lin, Y.-C., Tung, K.-Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)CrossRefGoogle Scholar
  11. 11.
    Lin, W.-C., Ke, S.-W., Tsai, C.-F.: CANN: an intrusion detection system based on combining cluster centers and nearest neighbors. Knowl.-Based Syst. 78, 13–21 (2015)CrossRefGoogle Scholar
  12. 12.
    Mallikarjunan, K.N., Muthupriya, K., Shalinie, S.M.: A survey of distributed denial of service attack. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–6, January 2016Google Scholar
  13. 13.
    Merlo, A., Spadacini, E., Migliardi, M.: IPS-based reduction of network energy consumption. Logic J. IGPL 24(6), 982 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Migliardi, M., Merlo, A.: Improving energy efficiency in distributed intrusion detection systems. J. High Speed Netw. 19(3), 251–264 (2013)Google Scholar
  15. 15.
    Mitchell, R., Chen, I.-R.: A survey of intrusion detection in wireless network applications. Comput. Commun. 42, 1–23 (2014)CrossRefGoogle Scholar
  16. 16.
    Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: Review: a survey of intrusion detection techniques in cloud. J. Netw. Comput. Appl. 36(1), 42–57 (2013)CrossRefGoogle Scholar
  17. 17.
    Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intrusion detection techniques in cloud. J. Netw. Comput. Appl. 36(1), 42–57 (2013)CrossRefGoogle Scholar
  18. 18.
    Noorbehbahani, F., Fanian, A., Mousavi, R., Hasannejad, H.: An incremental intrusion detection system using a new semi-supervised stream classification method. Int. J. Commun. Syst. 30(4) (2017). e3002-n/a, e3002 IJCS-15-0106.R1Google Scholar
  19. 19.
    Patel, A., Taghavi, M., Bakhtiyari, K., Júnior, J.C.: An intrusion detection and prevention system in cloud computing: a systematic review. J. Netw. Comput. Appl. 36(1), 25–41 (2013)CrossRefGoogle Scholar
  20. 20.
    Şen, S., Clark, J.A., Tapiador, J.E.: Power-aware intrusion detection in mobile ad hoc networks. In: Zheng, J., Mao, S., Midkiff, S.F., Zhu, H. (eds.) ADHOCNETS 2009. LNICSSITE, vol. 28, pp. 224–239. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11723-7_15 CrossRefGoogle Scholar
  21. 21.
    Tsikoudis, N., Papadogiannakis, A., Markatos, E.P.: LEoNIDS: a low-latency and energy-efficient network-level intrusion detection system. IEEE Trans. Emerg. Top. Comput. 4(1), 142–155 (2016)CrossRefGoogle Scholar
  22. 22.
    Viegas, E., Santin, A.O., França, A., Jasinski, R., Pedroni, V.A., Oliveira, L.S.: Towards an energy-efficient anomaly-based intrusion detection engine for embedded systems. IEEE Trans. Comput. 66(1), 163–177 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wang, W., Guyet, T., Quiniou, R., Cordier, M.-O., Masseglia, F., Zhang, X.: Autonomic intrusion detection: adaptively detecting anomalies over unlabeled audit data streams in computer networks. Knowl.-Based Syst. 70, 103–117 (2014)CrossRefGoogle Scholar
  24. 24.
    Weller-Fahy, D.J., Borghetti, B.J., Sodemann, A.A.: A survey of distance and similarity measures used within network intrusion anomaly detection. IEEE Commun. Surv. Tutorials 17(1), 70–91 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhu, H., Du, S., Gao, Z., Dong, M., Cao, Z.: A probabilistic misbehavior detection scheme toward efficient trust establishment in delay-tolerant networks. IEEE Trans. Parallel Distrib. Syst. 25(1), 22–32 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. Al Haj Baddar
    • 1
  • A. Merlo
    • 2
  • M. Migliardi
    • 3
    • 4
  • F. Palmieri
    • 5
  1. 1.The University of JordanAmmanJordan
  2. 2.DIBRISUniversity of GenoaGenoaItaly
  3. 3.DEIUniversity of PaduaPaduaItaly
  4. 4.CIPIUniversity of GenoaGenoaItaly
  5. 5.DIUniversity of SalernoFiscianoItaly

Personalised recommendations