ASRD: Algorithm for Spliced Region Detection in Digital Image Forensics

  • A. Meenakshi SundaramEmail author
  • C. Nandini
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 575)


Image splicing is one of the most frequently exercised in the area of image forgery that is quite challenging to be identified. After reviewing existing techniques towards identification of spliced region, it was found that existing techniques are either computationally expensive or do not address the cumulative problem. Hence, this paper, a novel and simple algorithm is presented called as ASRD i.e. Algorithm for Spliced Region Detection. A simple statistical-based approach is presented that perform partitioned blocks followed by detection of various artifacts among the neighbor blocks. The algorithm then implicates a classification condition for tampered and non-tampered region to truly identify the spliced region. With an aid of histogram analysis, true positive score, true negative score, accuracy and computational performance, the proposed algorithm was found to excel better performance in detection of spliced region.


Image splicing Image forensics Color filter array Localization Accuracy 


  1. 1.
    Shih, F.Y.: Multimedia Security: Watermarking, Steganography, and Forensics. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  2. 2.
    Julliand, T., Nozick, V., Talbot, H.: Image noise and digital image forensics. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 3–17. Springer, Cham (2016). doi: 10.1007/978-3-319-31960-5_1 CrossRefGoogle Scholar
  3. 3.
    Ding, F., Dong, W., Zhu, G., Shi, Y.-Q.: An advanced texture analysis method for image sharpening detection. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 72–82. Springer, Cham (2016). doi: 10.1007/978-3-319-31960-5_7 CrossRefGoogle Scholar
  4. 4.
    Choi, C.-H., Lee, M.-J., Hyun, D.-K., Lee, H.-K.: Forged region detection for scanned images. Springer-Comput. Sci. Converg. 114, 687–694 (2011)CrossRefGoogle Scholar
  5. 5.
    Malviya, P., Naskar, R.: Digital forensic technique for double compression based JPEG image forgery detection. Springer-Inf. Syst. Secur. 8880, 437–447 (2014)Google Scholar
  6. 6.
    Smith, S.: iMediaEthics’ Top 10 Fake and Doctored Photo Stories. An online article of iMediaEthics 2016. Accessed 20 Oct
  7. 7.
    Vamosi, R.: Researcher: Bin Laden’s beard is real, video is not. An online article of CNET. Accessed 20 Oct 2016
  8. 8.
    Blitzer, H.L., Stein-Ferguson, K., Huang, J.: Understanding Forensic Digital Imaging. Academic Press, Cambridge (2010)Google Scholar
  9. 9.
    Stamm, M.C., Liu, K.J.R.: Forensic detection image manipulation using statistical intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 5(3), 492–506 (2010)CrossRefGoogle Scholar
  10. 10.
    Weisi, L., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E.: Haohong Wang, Multimedia Analysis, Processing and Communications. Springer Science & Business Media, New York (2011)Google Scholar
  11. 11.
    Sundarm, A.M., Nandini, C.: Copy-move forgery detection- a survey. In: ICACCN-International Conference on Advanced Computing, Communication Networks, Chandigarh, 02–03 June 2011Google Scholar
  12. 12.
    Sundarm, A.M., Nandini, C.: Investigational study of image forensic applications, techniques and research directions. Int. J. Emerg. Technol. Adv. Eng. Certif. J. 4(8), 1–9 (2014). ISSN 2250-2459, ISO 9001:2008Google Scholar
  13. 13.
    Sundarm, A.M., Nandini, C.: Image retouching and it’s detection-a survey. In: NCGCT-First National Conference on Green Computing Technologies, DSATM, Bangalore, 07 March 2015Google Scholar
  14. 14.
    Sundarm, A.M., Nandini, C.: Feature based image authentication using symmetric surround saliency mapping in image forensics. Int. J. Comput. Appl. 104(13), 1–9 (2014)Google Scholar
  15. 15.
    Sundarm, A.M., Nandini, C.: CBFD: coherence based forgery detection technique in image forensics analysis. In: IEEE-ICERECT-2015-International Conference on Emerging Research in Electronics, Computer Science and Technology, 17–19 December 2015Google Scholar
  16. 16.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Splicebuster: a new blind image splicing detector. In: IEEE International Workshop on Information Forensics and Security (2015)Google Scholar
  17. 17.
    Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (web). In: IEEE International Conference on Multimedia and Expo Workshop, pp. 1–6 (2015)Google Scholar
  18. 18.
    Amerini, I., Becarelli, R., Caldelli, R., Mastio, A.D.: Splicing forgeries localization through the use of first digit features. In: IEEE International Workshop on Information Forensics and Security (2014)Google Scholar
  19. 19.
    Moghaddasi, Z., Jalab, H.A., Md Noor, R.: SVD-based image splicing detection. In: International Conference on Information Technology and Multimedia (2014)Google Scholar
  20. 20.
    Su, B., Yuan, Q., Wang, S., Zhao, C., Li, S.: Enhanced state selection Markov model for image splicing detection. Springer-EURASIP J. Wirel. Commun. Netw. 2014, 1–10 (2014)CrossRefGoogle Scholar
  21. 21.
    Han, J.G., Park, T.H., Moon, Y.H., Eom, K.: Efficient Markov feature extraction method for image splicing detection using maximization and threshold expansion. J. Electron. Imaging 25(2), 023031 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Zhao, C., Pi, Y., Li, S.: Revealing image splicing forgery using local binary patterns of DCT coefficients. In: Liang, Q., et al. (eds.) Springer Journals of Communications, Signal Processing, and Systems. LNEE, pp. 181–189. Springer, New York (2012). doi: 10.1007/978-1-4614-5803-6_19 CrossRefGoogle Scholar
  23. 23.
    Saleh, S.Q., Hussain, M., Muhammad, G., Bebis, G.: Evaluation of image forgery detection using multi-scale weber local descriptors. In: Bebis, G., et al. (eds.) ISVC 2013. LNCS, vol. 8034, pp. 416–424. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41939-3_40 CrossRefGoogle Scholar
  24. 24.
    Zhao, X., Li, S., Wang, S., Li, J., Yang, K.: Optimal chroma-like channel design for passive color image splicing detection. Springer-EURASIP J. Adv. Signal Process. 2012, 240 (2012)CrossRefGoogle Scholar
  25. 25.
    Pan, X., Zhang, X., Lyu, S.: Exposing image splicing with inconsistent local noise variances. In: IEEE International Conference on Computational Photography, pp. 1–10 (2012)Google Scholar
  26. 26.
    Niu, H., Zhou, C., Wang, B., Zheng, X., Zhou, S.: Splicing model and hyper-chaotic system for image encryption. J. Electr. Eng. 67(2), 78–86 (2016)Google Scholar
  27. 27.
    Columbia Image Splicing Detection Evaluation Dataset., Retrieved 06th February 2017
  28. 28.
    Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing and Information TechnologyREVA UniversityBangaloreIndia
  2. 2.Department of Computer Science and EngineeringDayanand Sagar Academy of Technology and ManagementBangaloreIndia

Personalised recommendations