On Data Persistence Models for Mobile Crowdsensing Applications

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 706)

Abstract

In this paper, we discuss various models and solutions for saving data in crowdsensing applications. A mobile crowdsensing is a relatively new sensing paradigm based on the power of the crowd with the sensing capabilities of mobile devices, such as smartphones, wearable devices, cars with mobile equipment, etc. This conception (paradigm) becomes quite popular due to huge penetration of mobile devices equipped with multiple sensors. The conception enables to collect local information from individuals (they could be human persons or things) surrounding environment with the help of sensing features of the mobile devices. In our paper, we provide a review of the data persistence solutions (back-end systems, data stores, etc.) for mobile crowdsensing applications. The main goal of our research is to propose a software architecture for mobile crowdsensing in Smart City services. The deployment for such kind of applications in Russia has got some limitations due to legal restrictions also discussed in our paper.

Keywords

Crowdsensing Mobile Cloud Context-aware 

References

  1. 1.
    Namiot, D., Sneps-Sneppe, M.: On crowd sensing back-end. In: DAMDID/RCDL 2016 Selected Papers of the XVIII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2016), CEUR Workshop Proceedings, vol. 1752, pp. 168–175 (2016)Google Scholar
  2. 2.
    Tanas, C., Herrera-Joancomartí, J.: Users as smart sensors: a mobile platform for sensing public transport incidents. In: Nin, J., Villatoro, D. (eds.) CitiSens 2012. LNCS (LNAI), vol. 7685, pp. 81–93. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36074-9_8 CrossRefGoogle Scholar
  3. 3.
    Internet of Things, Web of Data & Citizen Participation as Enablers of Smart Cities. http://www.slideshare.net/dipina/internet-of-things-web-of-data-citizen-participation-as-enablers-of-smart-cities. Accessed Jan 2017
  4. 4.
    Namiot, D., Sneps-Sneppe, M.: The physical web in smart cities. In: Advances in Wireless and Optical Communications (RTUWO 2015). IEEE Press, New York (2015)Google Scholar
  5. 5.
    Namiot, D., Sneps-Sneppe, M.: CAT - cars as tags. In: 2014 Proceedings of the 7th International Workshop on Communication Technologies for Vehicles (Nets4Cars-Fall). IEEE Press, New York (2014)Google Scholar
  6. 6.
    Massaro, E., et al.: The car as an ambient sensing platform. Proc. IEEE 105(1), 3–7 (2017)CrossRefGoogle Scholar
  7. 7.
    Hu, X., Chu, T., Chan, H., Leung, V.: Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)CrossRefGoogle Scholar
  8. 8.
    Calabrese, F., Ratti, C.: Real time rome. Netw. Commun. Stud. 20(3-4), 247–258 (2006)Google Scholar
  9. 9.
    Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Pervasive Comput. 1, 46–55 (2003)CrossRefGoogle Scholar
  10. 10.
    Konidala, D.M., Deng, R.H., Li, Y., Lau, H.C., Fienberg, S.E.: Anonymous authentication of visitors for mobile crowd sensing at amusement parks. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 174–188. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38033-4_13 CrossRefGoogle Scholar
  11. 11.
    Ganti, R.K., Fan, Y., Hui, L.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)CrossRefGoogle Scholar
  12. 12.
    Lane, N., et al.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)CrossRefGoogle Scholar
  13. 13.
    Bellavista, P., et al.: Scalable and cost-effective assignment of mobile crowdsensing tasks based on profiling trends and prediction: the ParticipAct living lab experience. Sensors 15(8), 18613–18640 (2015)CrossRefGoogle Scholar
  14. 14.
    Namiot, D., Sneps-Sneppe, M.: On software standards for smart cities: API or DPI. In: ITU Kaleidoscope Academic Conference: Living in a converged world-Impossible without standards? Proceedings of the 2014. IEEE Press (2014)Google Scholar
  15. 15.
    Yue, K., et al.: Research of embedded database SQLite application in intelligent remote monitoring system. In: 2010 International Forum on Information Technology and Applications (IFITA), vol. 2. IEEE (2010)Google Scholar
  16. 16.
    Namiot, D., Sneps-Sneppe, M.: On open source mobile sensing. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 82–94. Springer, Cham (2014). doi:10.1007/978-3-319-10353-2_8 Google Scholar
  17. 17.
    Funf. http://funf.org/. Accessed Jan 2017
  18. 18.
    Bansal, S.K.: Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE International Congress on Big Data. IEEE Press (2014)Google Scholar
  19. 19.
    Namiot, D.: On big data stream processing. Int. J. Open Inf. Technol. 3(8), 48–51 (2015)Google Scholar
  20. 20.
    Kroß, J., Brunnert, A., Prehofer, C., Runkler, T.A., Krcmar, H.: Stream processing on demand for lambda architectures. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 243–257. Springer, Cham (2015). doi:10.1007/978-3-319-23267-6_16 CrossRefGoogle Scholar
  21. 21.
    Lambda architecture. http://lambda-architecture.net/. Accessed Jan 2017
  22. 22.
    Questioning the Lambda Architecture. http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.htm. Accessed Jan 2017
  23. 23.
    Gál, Z., Hunor S., Béla G.: Information flow and complex event processing of the sensor network communication. In: 2015 Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). IEEE Press (2015)Google Scholar
  24. 24.
    Merging Batch and Stream Processing in a Post Lambda World. https://www.datanami.com/2016/06/01/merging-batch-streaming-post-lambda-world/. Accessed Jan 2017
  25. 25.
    Garg, N.: Apache Kafka. Packt Publishing Ltd, Birmingham (2013)Google Scholar
  26. 26.
    Maarala, A.I., et al.: Low latency analytics for streaming traffic data with Apache Spark. In: 2015 IEEE International Conference on Big Data (Big Data). IEEE Press (2015)Google Scholar
  27. 27.
  28. 28.
    Apache Edgent. https://edgent.apache.org/. Accessed Jan 2017
  29. 29.
  30. 30.
    Sanaei, Z., et al.: Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369–392 (2014)CrossRefGoogle Scholar
  31. 31.
    Osseiran, Afif, et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)CrossRefGoogle Scholar
  32. 32.
    Namiot, D., Sneps-Sneppe, M.: On hyper-local web pages. In: Vishnevsky, V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 11–18. Springer, Cham (2016). doi:10.1007/978-3-319-30843-2_2 CrossRefGoogle Scholar
  33. 33.
    Scalable Streaming of Video using Amazon Web Services. http://www.slideshare.net/AmazonWebServices/2013-1021scalablestreamingwebinar. Accessed Jan 2017
  34. 34.
    Selectel API (Russia). https://selectel.ru/services/cloud-storage/. Accessed Jan 2017
  35. 35.
    Apache CloudStack. https://cloudstack.apache.org/. Accessed Jan 2017
  36. 36.
    Nurmi, D., et al.: The eucalyptus open-source cloud-computing system. In: 2009 Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID 2009. IEEE Press (2009)Google Scholar
  37. 37.
    OpenStack. https://www.openstack.org/. Accessed Jan 2017
  38. 38.
    Wen, X., et al.: Comparison of open-source cloud management platforms: OpenStack and OpenNebula. In: 2012 Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE Press (2012)Google Scholar
  39. 39.
    IBM Cloud Video. https://www.ibm.com/cloud-computing/solutions/video/. Accessed Jan 2017
  40. 40.
    Smartvue. http://smartvue.com/cloud-services.html. Accessed Jan 2017
  41. 41.
  42. 42.
    Kurento – the stream-oriented generic enabler. https://www.fiware.org/2014/07/04/kurento-the-stream-oriented-generic-enabler/. Accessed Jan 2017
  43. 43.
    Gheith, A., et al.: IBM bluemix mobile cloud services. IBM J. Res. Dev. 60(2-3), 7:1 (2016)CrossRefGoogle Scholar
  44. 44.
    Apache Usergrid. https://usergrid.apache.org/. Accessed Jan 2017
  45. 45.
    Rackspace Cloud Files. https://www.rackspace.com/cloud/files. Accessed Jan 2017
  46. 46.
    Namiot, D., Sneps-Sneppe, M.: On the domestic standards for Smart Cities. Int. J. Open Inf. Technol. 4(7), 32–37 (2016)Google Scholar
  47. 47.
    Namiot, D., Sneps-Sneppe, M.: On physical web browser. In: Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT), pp. 220–225. IEEE Press, New York (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Ventspils International Radioastronomy CentreVentspils University CollegeVentspilsLatvia

Personalised recommendations