Advertisement

Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements

  • See Kei Lee
  • Ryo Yamada
  • Tatsuhiko Ohto
  • Shoji Tanaka
  • Hirokazu Tada
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Understanding charge transport mechanism of single-molecule–metal–molecule junctions is important in the field of molecular electronics. Till now, most of the reported works focused on small molecules, where tunneling transport dominates the charge transport. As the length of the molecule increases, the charge transport is expected to show a transition from tunneling to hopping. In this work, we performed a comprehensive investigation on oligothiophene molecules. We have measured the temperature dependence of electrical conductance and thermopower of oligothiophene molecular junctions with molecular lengths ranging from 2.2 nm (5T-di-SCN) to 7 nm (17T-di-SCN) using the homebuilt scanning tunneling microscope. The conductance measurement results reveal that the dominant charge transport for oligothiophene changed from tunneling to hopping transport at molecular length of ca. 5 nm. In addition, the thermopower for all the oligothiophene molecules was found to be positive, indicating the transport of charge carrier through the highest occupied molecular orbital level.

Keywords

Electrical conductance Thermopower Molecular junctions Oligothiophenes Charge transport 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP20343741, JP15K13673 and JP25110012. L.S.K. would like to thank Henrique Rosa Testai for assistance in the thermoelectric experiments.

References

  1. 1.
    Nitzan, A., Ratner, M.A.: Science 300, 1384 (2003)CrossRefGoogle Scholar
  2. 2.
    Aradhya, S.V., Venkataraman, L.: Nat. Nanotechnol. 8, 399 (2013)CrossRefGoogle Scholar
  3. 3.
    McCreery, R.L., Yan, H., Bergren, A.J.: Phys. Chem. Chem. Phys. 15, 1065 (2013)CrossRefGoogle Scholar
  4. 4.
    Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S., Moth-Poulsen, K.: Chem. Soc. Rev. 43, 7378 (2014)CrossRefGoogle Scholar
  5. 5.
    Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H.: Nano Lett. 8, 1237 (2008)CrossRefGoogle Scholar
  6. 6.
    Ie, Y., Endou, M., Lee, S.K., Yamada, R., Tada, H., Aso, Y.: Angew. Chem. Int. Ed. 50, 11980 (2011)CrossRefGoogle Scholar
  7. 7.
    Nakamura, T., Fujitsuka, M., Araki, Y., Ito, O., Ikemoto, J., Takimiya, K., Aso, Y., Otsubo, T.: Phys. Chem. B 108, 10700 (2004)CrossRefGoogle Scholar
  8. 8.
    Luo, L., Choi, S.H., Frisbie, C.D.: Chem. Mater. 23, 631 (2011)CrossRefGoogle Scholar
  9. 9.
    Mishra, A., Ma, C.Q., Bauerle, P.: Chem. Rev. 109, 1141 (2009)CrossRefGoogle Scholar
  10. 10.
    Leary, E., Hobenreich, H., Higgins, S.J., van Zalinge, H., Haiss, W., Nichols, R.J., Finch, C.M., Grace, I., Lambert, C.J., McGrath, R., Smerdon, J.: Phys. Rev. Lett. 102, 086801 (2009)CrossRefGoogle Scholar
  11. 11.
    Xu, B.Q., Li, X.L., Xiao, W.Y., Sakaguchi, H., Tao, N.J.: Nano Lett. 5, 1491 (2005)CrossRefGoogle Scholar
  12. 12.
    Dell, E.J., Capozzi, B., Xia, J., Venkataraman, L.: Nat. Chem. 7, 209 (2015)CrossRefGoogle Scholar
  13. 13.
    Troisi, A., Ratner, M.: Small 2, 172 (2006)CrossRefGoogle Scholar
  14. 14.
    Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Chem. Phys. Lett. 491, 109 (2010)CrossRefGoogle Scholar
  15. 15.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge, UK, New York (2006)Google Scholar
  16. 16.
    Tao, N.J.: Nat. Nanotechnol. 1, 173 (2006)CrossRefGoogle Scholar
  17. 17.
    Wold, D.J., Haag, R., Rampi, M.A., Frisbie, C.D.: J. Phys. Chem. B 106, 2813 (2002)CrossRefGoogle Scholar
  18. 18.
    Salomon, A., Cahen, D., Lindsay, S., Tomfohr, J., Engelkes, V.B., Frisbie, C.D.: Adv. Mater. 15, 1881 (2003)CrossRefGoogle Scholar
  19. 19.
    Joachim, C., Ratner, M.A.: Proc. Natl. Acad. Sci. U.S.A. 102, 8801 (2005)CrossRefGoogle Scholar
  20. 20.
    Yamada, R., Kumazawa, H., Tanaka, S., Tada, H.: Appl. Phys. Express 2, 025002 (2009)CrossRefGoogle Scholar
  21. 21.
    Paulsson, M., Datta, S.: Phys. Rev. B 67, 241403 (2003)CrossRefGoogle Scholar
  22. 22.
    Reddy, P., Jang, S.Y., Segalman, R.A., Majumdar, A.: Science 315, 1568 (2007)CrossRefGoogle Scholar
  23. 23.
    Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Nano Lett. 8, 715 (2008)CrossRefGoogle Scholar
  24. 24.
    Tan, A., Balachandran, J., Sadat, S., Gavini, V., Dunietz, B.D., Jang, S.-Y., Reddy, P.: J. Am. Chem. Soc. 133, 8838 (2011)CrossRefGoogle Scholar
  25. 25.
    Tan, A., Balachandran, J., Dunietz, B.D., Jang, S.-Y., Gavini, V., Reddy, P.: Appl. Phys. Lett. 101, 243107 (2012)CrossRefGoogle Scholar
  26. 26.
    Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Nano Lett. 9, 1164 (2009)CrossRefGoogle Scholar
  27. 27.
    Widawsky, J.R., Chen, W., Vazquez, H., Kim, T., Breslow, R., Hybertsen, M.S., Venkataraman, L.: Nano Lett. 13, 2889 (2013)CrossRefGoogle Scholar
  28. 28.
    Lee, S.K., Ohto, T., Yamada, R., Tada, H.: Nano Lett. 14, 5276 (2014)CrossRefGoogle Scholar
  29. 29.
    Yee, S.K., Malen, J.A., Majumdar, A., Segalman, R.A.: Nano Lett. 11, 4089 (2011)CrossRefGoogle Scholar
  30. 30.
    Lee, S.K., Buerkle, M., Yamada, R., Asai, Y., Tada, H.: Nanoscale 7, 20497 (2015)CrossRefGoogle Scholar
  31. 31.
    Kim, Y., Jeong, W., Kim, K., Lee, W., Reddy, P.: Nat. Nanotechnol. 9, 881 (2014)CrossRefGoogle Scholar
  32. 32.
    Tanaka, S., Yamashita, Y.: Synth. Met. 101, 532 (1999)CrossRefGoogle Scholar
  33. 33.
    Tanaka, S., Yamashita, Y.: Trans. Mater. Res. Soc. Jpn. 26, 739 (2001)Google Scholar
  34. 34.
    Tanaka, S., Yamashita, Y.: Synth. Met. 119, 67 (2001)CrossRefGoogle Scholar
  35. 35.
    Ciszek, J.W., Stewart, M.P., Tour, J.M.: J. Am. Chem. Soc. 126, 13172 (2004)CrossRefGoogle Scholar
  36. 36.
    Ciszek, J.W., Tour, J.M.: Chem. Mater. 17, 5684 (2005)CrossRefGoogle Scholar
  37. 37.
    Dreesen, L., Volcke, C., Sartenaer, Y., Peremans, A., Thiry, P.A., Humbert, C., Grugier, J., Marchand-Brynaert, J.: Surf. Sci. 600, 4052 (2006)CrossRefGoogle Scholar
  38. 38.
    Xu, B.Q., Tao, N.J.: Science 301, 1221 (2003)CrossRefGoogle Scholar
  39. 39.
    Park, Y.S., Widawsky, J.R., Kamenetska, M., Steigerwald, M.L., Hybertsen, M.S., Nuckolls, C., Venkataraman, L.: J. Am. Chem. Soc. 131, 10820 (2009)CrossRefGoogle Scholar
  40. 40.
    Selzer, Y., Cabassi, M.A., Mayer, T.S., Allara, D.L.: Nanotechnology 15, S483 (2004)Google Scholar
  41. 41.
    Choi, S.H., Kim, B., Frisbie, C.D.: Science 320, 1482 (2008)CrossRefGoogle Scholar
  42. 42.
    Selzer, Y., Cabassi, M.A., Mayer, T.S., Allara, D.K.: J. Am. Chem. Soc. 126, 4052 (2004)CrossRefGoogle Scholar
  43. 43.
    Choi, S.H., Risko, C., Delgado, M.C.R., Kim, B., Bredas, J.-L., Frisbie, C.D.: J. Am. Chem. Soc. 132, 4358 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • See Kei Lee
    • 1
  • Ryo Yamada
    • 1
  • Tatsuhiko Ohto
    • 1
  • Shoji Tanaka
    • 2
  • Hirokazu Tada
    • 1
  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Research Center for Molecular Scale NanoscienceInstitute for Molecular ScienceOkazakiJapan

Personalised recommendations