About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing

State of the Art and Research Opportunities
  • Jukka Pakkanen
  • Diego Manfredi
  • Paolo Minetola
  • Luca Iuliano
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 68)

Abstract

Additive Manufacturing (AM) and 3D printing are drivers for material savings in manufacturing. Owing to the continuous diffusion of 3D printing driven by low-cost entry-level material extrusion printers, sustainability of a so popular AM technology is of paramount importance. Therefore, recycling 3D printed wastes and 3D parts again at the end of their life is an important issue to be addressed. Research efforts are directed towards the improvement of the biodegradability of 3D printing filaments and the replacement of oil based feedstock with bio-based compostable plastics. The aim of this work is to describe the state of the art about development and use of recycled or biodegradable filaments in 3D printing. Beyond a critical review of the literature, open issues and research opportunities are presented.

Keywords

Additive manufacturing 3D printing Fused Deposition Modelling (FDM) Biodegradability Recycling Bio-based filaments Sustainability 

References

  1. 1.
    European Union action on circular economy. http://ec.europa.eu/environment/circular-economy/index_en.htm
  2. 2.
    Kohtala, C.: Addressing sustainability in research on distributed production: an integrated literature review. J. Clean. Prod. 106, 654–668 (2015)CrossRefGoogle Scholar
  3. 3.
    Hopewell, J., Drovak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B, 364(1526), 2115–2126 (2009)Google Scholar
  4. 4.
    Calignano, F., Manfredi, D., Ambrosio, E.P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., Fino, P.: Overview on additive manufacturing technologies. Proc. IEEE 105(4), 593–612 (2017)CrossRefGoogle Scholar
  5. 5.
    Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., Bowyer, A.: RepRap – the replicating rapid prototyper. Robotica 29(1), 177–191 (2011)Google Scholar
  6. 6.
    ISO/ASTM Standard, 52900:2015 – Additive manufacturing – General principles: TerminologyGoogle Scholar
  7. 7.
    McAlister, C., Wood, J.: The potential of 3D printing to reduce the environmental impacts of production. Eceee Ind. Summer Study Proc. 2(72), 213–221 (2014)Google Scholar
  8. 8.
    Gebler, M., Schoot Uiterkamp, A.J.M., Visser, C.: A global sustainability perspective on 3D printing technologies. Energy Policy 74, 158–167 (2014)Google Scholar
  9. 9.
    Li, T., Aspler, J., Kingsland, A., Cormier, L.M., Zou, X.: 3d printing – a review of technologies, markets, and opportunities for the forest industry. J. Sci. Technol. For. Prod. Process. 5(2), 30 (2016)Google Scholar
  10. 10.
  11. 11.
    Stephens, B., Azimi, P., Orch, Z.E., Ramos, T.: Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79, 334–339 (2013)CrossRefGoogle Scholar
  12. 12.
    Steinle, P.: Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J. Occup. Environ. Hygiene 13(2), 121–132 (2016)Google Scholar
  13. 13.
    Duran, C., Subbian, V., Giovanetti, M.T., Simkins, J.R., Beyette Jr., F.R.: Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp. J. 21(5), 528–534 (2015)Google Scholar
  14. 14.
    B-PET Filament, http://bpetfilament.com/
  15. 15.
    Chia, H.N., Wu, B.M.: Recent advances in 3D printing of biomaterials. J. Biol. Eng. 4(9), 1–14 (2015)Google Scholar
  16. 16.
    Serra, T., Planell, J.A., Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 9, 5521–5530 (2013)CrossRefGoogle Scholar
  17. 17.
    Melocchi, A., Parietti, F., Loreti, G., Maroni, A., Gazzaniga, A., Zema, L.: 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Delivery Sci. Technol. 30, 360–367 (2015). Part BGoogle Scholar
  18. 18.
    Pietrzak, K., Isreb, A., Alhnan, M.A.: A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm. 96, 380–387 (2015)CrossRefGoogle Scholar
  19. 19.
    Salminen, A., Seppälä, J.: 3D printing of thermoplastic cellulose derivatives. In: Design Driven Value Chains in the World of Cellulose project report 1, pp. 48–49 (2016)Google Scholar
  20. 20.
    Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., Kuo, W.F., Chen, C.M.: Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos. B 86, 36–39 (2016)CrossRefGoogle Scholar
  21. 21.
    David, C., Athina, P., Christophe, G., Nynika, J., Steffen, R., Achim, M., Skylar, T.: 3D-printed wood: programming hygroscopic material transformations. 3D Print. Addit. Manuf. 2(3), 106–116 (2015)Google Scholar
  22. 22.
    Duigou, A.L., Castro, M., Bevanc, R., Martin, N.: 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 96, 106–114 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J., Wei, J.: Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth. Met. 217, 79–86 (2016)CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Cantrell, J., Rohde, S., Damiani, D., Gurnani, R., DiSandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., Ifju, P.: Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Adv. Opt. Methods Exp. Mech. 3, 89–105 (2016)Google Scholar
  27. 27.
    Letcher T.: Material Property Testing of 3D printed Specimen in PLA on an Entry level 3D printer, In: proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition (2014)Google Scholar
  28. 28.
    Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., Camargo, M.: Polymer recycling and additive manufacturing in an open source context: optimization of processes and methods. In: 2015 Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, Texas (USA), 10–12 August 2015Google Scholar
  29. 29.
    Gkartzou, E., Koumoulos, E.P., Charitidis, C.A.: Production and 3D printing processing of bio-based thermoplastic filament. Manuf. Rev. 4(1), 14 (2017)Google Scholar
  30. 30.
    Hamod, H.: Suitability of recycled HDPE for 3D printing filament. B.Sc Thesis. Arcada University of Applied Science, Helsinki (2014)Google Scholar
  31. 31.
    Markstedt, K., Sundberg, J., Gatenholm, P.: 3D bioprinting of cellulose structures from an ionic liquid. 3D Print. Addit. Manuf. 1(3), 115–121 (2014)Google Scholar
  32. 32.
  33. 33.
    Al-Salem, S.M., Lettieri, P., Baeyens, J.: Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage. 29, 2625–2643 (2009)CrossRefGoogle Scholar
  34. 34.
    Perugini, F., Mastellone, M., Arena, U.: A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Progr. 24, 137–154 (2005)CrossRefGoogle Scholar
  35. 35.
    Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2115–2126 (2009)Google Scholar
  36. 36.
    Zenkiewicz, M., Richert, J., Rytlewski, P., Moraczewski, K., Stepczyńska, M., Karasiewicz, T.: Characterisation of multi-extruded poly(lactic acid). Polymer Test. 28(4), 412–418 (2009)Google Scholar
  37. 37.
    Pillin, I., Montrelay, N., Bourmaud, A., Grohens, Y.: Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degrad. Stab. 93(2), 321–328 (2008)Google Scholar
  38. 38.
    Kreiger, M.A., Mulder, M.L., Glover, A.G., Pearce, J.M.: Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. J. Cleaner Prod. 70, 90–96 (2014)CrossRefGoogle Scholar
  39. 39.
    Baechler, C., DeVuono, M., Pearce, J.M.: Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyp. J. 19(2), 118–125 (2013)Google Scholar
  40. 40.
    Torres, N., Robin, J.J., Boutevin, B.: Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. Eur. Polymer J. 36, 2075–2080 (2000)CrossRefGoogle Scholar
  41. 41.
    Hunt, E.J., Zhang, C., Anzalone, N., Pearce, J.M.: Polymer recycling codes for distributed manufacturing with 3-D printers. Resour. Conserv. Recycl. 97, 24–30 (2015)CrossRefGoogle Scholar
  42. 42.
    Chong, S., Chiub, H., Liao, Y., Hung, S., Pan, G.: Cradle to cradle® design for 3D printing. Chem. Eng. Trans. 45, 1669–1674 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jukka Pakkanen
    • 1
    • 2
  • Diego Manfredi
    • 2
  • Paolo Minetola
    • 1
  • Luca Iuliano
    • 1
  1. 1.Department of Management and Production EngineeringPolitecnico di TorinoTurinItaly
  2. 2.Center for Sustainable Future Technologies CSFT@PoliTo, Istituto Italiano di TecnologiaTurinItaly

Personalised recommendations