IMPROOF: Integrated Model Guided Process Optimization of Steam Cracking Furnaces

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 68)


IMPROOF will develop and demonstrate the steam cracking furnace of the 21st century by drastically improving the energy efficiency of the current state-of-the-art, in a cost effective way, while simultaneously reducing emissions of greenhouse gases and NOX per ton of ethylene produced by at least 25%. Therefore, the latest technological innovations in the field of energy efficiency and fouling minimization are implemented and combined, proving that these technologies work properly at TRL 5 and 6 levels. The first steps to reach the ultimate objective, i.e. to deploy the furnace at the demonstrator at commercial scale with the most effective technologies, will be discussed based on novel pilot scale data and modeling results.


Industrial steam cracking furnace design Increased energy efficiency Reduced coke formation Reduced emissions of greenhouse gasses Increased time on stream 



The work leading to this invention has received funding from the European Union Horizon H2020 Programme (H2020-SPIRE-04-2016) under grant agreement n°723706.


  1. Adams, B., Olver, J.: Impact of high-emissivity coatings on process furnace heat transfer. In: AIChE Spring Meeting 2015 (2015)Google Scholar
  2. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F.: Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 38, 215–282 (2012)CrossRefGoogle Scholar
  3. Albright, L.F., Crynes, B.L., Corcoran, W.H.: Pyrolysis, Theory and Industrial Practice. Academic Press, New York (1983)Google Scholar
  4. CEFIC: The 2016 Cefic European Facts & Figures (2016). Accessed 27 Oct 2016
  5. Dhuyvetter, I., Reyniers, M.-F., Froment, G.F., Marin, G.B., Viennet, D.: The influence of dimethyl disulfide on naphtha steam cracking. Ind. Eng. Chem. Res. 40, 4353–4362 (2001)CrossRefGoogle Scholar
  6. Holcombe, C.E., Chapman, L.R.: High emissivity coating composition and method of use. Google Patents (1999)Google Scholar
  7. Muñoz Gandarillas, A.E., Van Geem, K.M., Reyniers, M.-F., Marin, G.B.: Coking resistance of specialized coil materials during steam cracking of sulfur-free naphtha. Ind. Eng. Chem. Res. 53, 13644–13655 (2014)CrossRefGoogle Scholar
  8. Oasmaa, A., Van de Beld, B., Saari, P., Elliott, D.C., Solantausta, Y.: Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuels 29, 2471–2484 (2015)CrossRefGoogle Scholar
  9. Olajire, A.A.: CO2 capture and separation technologies for end-of-pipe applications – A review. Energy 35, 2610–2628 (2010)CrossRefGoogle Scholar
  10. Ren, T., Patel, M.K., Blok, K.: Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006)CrossRefGoogle Scholar
  11. Ren, T., Patel, M.K., Blok, K.: Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs. Energy 33, 817–833 (2008)Google Scholar
  12. Reyniers, P.A., Schietekat, C.M., van Cauwenberge, D.J., Vandewalle, L.A., van Geem, K.M., Marin, G.B.: Necessity and feasibility of 3D simulations of steam cracking reactors. Ind. Eng. Chem. Res. 54, 12270–12282 (2015)CrossRefGoogle Scholar
  13. Schietekat, C.U., Van Goethem, M.M., Van Geem, K.T.W., Marin, G.: 3D swirl flow reactor technology for pyrolysis processes: Hydrodynamic and computational fluid dynamic study. In: XX International Conference on Chemical Reactors (2012)Google Scholar
  14. Stefanidis, G.D., Van Geem, K.M., Heynderickx, G.J., Marin, G.B.: Evaluation of high-emissivity coatings in steam cracking furnaces using a non-grey gas radiation model. Chem. Eng. J. 137, 411–421 (2008)CrossRefGoogle Scholar
  15. Van Cauwenberge, D.J., Van Dewalle, L.A., Reyniers, P.A., Van Geem, K.M., Marin, G.B., Floré, J.: Periodic reactive flow simulation: Proof of concept for steam cracking coils. AIChE J. (2016)Google Scholar
  16. Venderbosch, R.H., Prins, W.: Fast pyrolysis technology development. Biofuels Bioprod. Biorefin. 4, 178–208 (2010)CrossRefGoogle Scholar
  17. Zhang, Y., Qian, F., Schietekat, C.M., van Geem, K.M., Marin, G.B.: Impact of flue gas radiative properties and burner geometry in furnace simulations. AIChE J. 61, 936–954 (2015)CrossRefGoogle Scholar
  18. Zhang, Z.B., Albright, L.F.: Pretreatments of coils to minimize coke formation in ethylene furnaces. Ind. Eng. Chem. Res. 49, 1991–1994 (2010)CrossRefGoogle Scholar
  19. Zimmermann, H., Walzl, R.: Ethylene. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory for Chemical TechnologyGhent UniversityGhentBelgium
  2. 2.Centre National de La Recherche ScientifiqueNancyFrance
  3. 3.Dow Benelux B.V.TerneuzenThe Netherlands
  4. 4.Cress B.V.BreskensThe Netherlands
  5. 5.European Centre for Research and Advanced Training in Scientific ComputationToulouseFrance
  6. 6.Politecnico di MilanoMilanItaly
  7. 7.John Zink International Luxembourg SARLDudelangeLuxembourg
  8. 8.Schmidt + Clemens GmbH +CO. KGLindlarGermany
  9. 9.Ayming BelgiumBrusselsBelgium
  10. 10.AVGIGhentBelgium
  11. 11.Emisshield Inc.BlacksburgUSA
  12. 12.Technip Benelux B.V.ZoetermeerThe Netherlands

Personalised recommendations