Microbiology of Subglacial Environments

  • Amanda M. Achberger
  • Alexander B. Michaud
  • Trista J. Vick-Majors
  • Brent C. Christner
  • Mark L. Skidmore
  • John C. Priscu
  • Martyn Tranter
Chapter

Abstract

The abundance of water at the base of glaciers and polar ice sheets forms lacustrine features and habitats in the saturated sediments of subglacial hydrological systems. Nutrients and energy sources may be made available through mineralization of stored organic matter or through glacial processes (e.g., bedrock comminution) that provide redox couples for microbial life. The logistical challenges of accessing subglacial environments has limited direct observations to a small number of locations, but microorganisms and associated microbial activities have been found in all subglacial environments examined to date (i.e., basal ice and sediment cores, subglacial lakes, and subglacial outflows at glacial margins). Molecular and biogeochemical data imply that the microbial clades common in subglacial environments are utilizing reduced iron, sulfur, and nitrogen compounds as energy sources to fuel primary production at the glacial bed. Here, we review the latest information on the diversity of subglacial environments and discuss how interactions between physical and biogeochemical processes affect microbial ecosystems and processes at the glacier bed.

References

  1. Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:66–73Google Scholar
  2. Achberger AM (2016) Structure and functional potential of microbial communities in Subglacial Lake Whillans and at the Ross Ice Shelf grounding zone, West Antarctica. PhD Thesis, Louisiana State UniversityGoogle Scholar
  3. Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ (2016) Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front Microbiol 7:1457PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alley RB, Cuffey KM, Evenson EB, Strasser JC, Lawson DE, Larson GJ (1997) How glaciers entrain and transport basal sediment: physical constraints. Q Sci Rev 16:1017–1038CrossRefGoogle Scholar
  5. Anderson KK and 49 others (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:47–51Google Scholar
  6. Bakermans C, Skidmore M (2011) Microbial respiration in ice at subzero temperatures (-4°C to -33°C). Environ Microbiol Rep 3:774–782PubMedCrossRefGoogle Scholar
  7. Barker JD, Sharp MJ, Fitzsimons RJT (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:193–172CrossRefGoogle Scholar
  8. Bell RE, Studinger M, Tikku AA, Clarke GKC, Gutner MM, Meertens C (2002) Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Nature 416:307–310PubMedCrossRefGoogle Scholar
  9. Benson T, Cherwinka J, Duvernois M, Elcheikh A, Feyzi F, Greenler L et al (2014) IceCube enhanced hot water drill functional description. Ann Glaciol 55:105–114CrossRefGoogle Scholar
  10. Bhatia MP, Charette MA, Bhatia MP, Das SB, Das SB, Longnecker K, Kujawinski EB (2010) Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim Cosmochim Acta 74:3768–3784CrossRefGoogle Scholar
  11. Bhatia M, Sharp MJ, Foght JM (2006) Distinct bacterial communities exist beneath a High Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bottrell S, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–3468CrossRefGoogle Scholar
  13. Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL (2014) Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 80:6146–6153PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boyd ES, Lange RK, Mitchell AC et al (2011) Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyd ES, Skidmore M, Mitchell AC, Bakermans C, Peters JW (2010) Methanogenesis in subglacial sediments. Environ Microbiol Rep 2:685–692PubMedCrossRefGoogle Scholar
  16. Bulat SA (2016) Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philos Trans R Soc A 374:20140292CrossRefGoogle Scholar
  17. Bulat SA, Alekhina IA, Blot M, Petit JR, Vasileva LP, de Angelis M, Wagenbach D, Lipenkov VY, Vasilyeva LP, Wloch D, Raynaud D, Lukin VV (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments. Int J Astrobiol 3:1–12CrossRefGoogle Scholar
  18. Carter SP, Fricker HA, Siegfried MR (2013) Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J Glaciol 59:1147–1162CrossRefGoogle Scholar
  19. Christianson K, Jacobel RW, Horgan HJ, Anandakrishnan S, Alley RB (2012) Subglacial Lake Whillans—ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet Sci Lett 331:237–245CrossRefGoogle Scholar
  20. Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584CrossRefGoogle Scholar
  21. Christner B, Montross G, Priscu J (2012) Dissolved gases in frozen basal water from the NGRIP borehole: implications for biogeochemical processes beneath the Greenland Ice Sheet. Polar Biol 35:1735–1741CrossRefGoogle Scholar
  22. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  23. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436PubMedCrossRefGoogle Scholar
  24. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  25. Christner BC, Priscu JC, Achberger AM et al (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–313PubMedCrossRefGoogle Scholar
  26. Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501CrossRefGoogle Scholar
  27. Chu VW (2014) Greenland ice sheet hydrology. A review. Prog Phys Geogr 38:19–54CrossRefGoogle Scholar
  28. Clarke GKC (2005) Subglacial processes. Annu Rev Earth Planet Sci 33:247–276CrossRefGoogle Scholar
  29. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487PubMedCrossRefGoogle Scholar
  30. de Angelis M, Petit J-R, Savarino J, Souches R, Thiemens MH (2004) Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry. Earth Planet Sci Lett 222:751–765CrossRefGoogle Scholar
  31. Dieser M, Broemsen EL, Cameron KA, King GM, Achberger A, Choquette K et al (2014) Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J 8:2305–2316PubMedPubMedCentralCrossRefGoogle Scholar
  32. Doran PT, Fritsen CH, Murray AE, Kenig F, McKay CP, Kyne JD (2008) Entry approach into pristine ice-sealed lakes—Lake Vida, East Antarctica, a model ecosystem. Limnol Oceanogr Methods 6:542–547CrossRefGoogle Scholar
  33. Doyle S, Montross S, Skidmore M, Christner B (2013) Characterizing microbial diversity and the potential for metabolic function at −15° C in the basal ice of Taylor Glacier, Antarctica. Biology 2:1034–1053PubMedPubMedCentralCrossRefGoogle Scholar
  34. Eyles N (2008) Glacio-epochs and the supercontinent cycle after ∼3.0 Ga: Tectonic boundary conditions for glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 258:89–129CrossRefGoogle Scholar
  35. Fisher AT, Mankoff KD, Tulaczyk SM, Tyler SW, Foley N (2015) High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci Adv 1:e1500093PubMedPubMedCentralCrossRefGoogle Scholar
  36. Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  37. Fountain AG, Walder JS (1998) Water flow through temperate glaciers. Rev Geophys 36:299–328CrossRefGoogle Scholar
  38. Fricker HA, Powell R, Priscu J, Tulaczyk S, Anandakrishnan S, Christner B et al (2011) Siple coast subglacial aquatic environments: The Whillans Ice Stream Subglacial Access Research Drilling Project. Geophys Monogr Ser 194:199–219Google Scholar
  39. Fricker HA, Scambos T (2009) Connected subglacial lake activity on lower Mercer and Whillans ice streams, West Antarctica, 2003–2008. J Glaciol 55:303–315CrossRefGoogle Scholar
  40. Fricker HA, Scambos T, Bindschadler R, Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science 315:1544–1548PubMedCrossRefGoogle Scholar
  41. Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore ML, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344PubMedCrossRefGoogle Scholar
  42. Gaidos E, Marteinsson V, Thorsteinsson T, Johannesson T, Rúnarsson ÁR, Stefansson A et al (2009) An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J 3:486–497PubMedCrossRefGoogle Scholar
  43. Gow AJ, Meese DA (1996) Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes. Ann Glaciol 22:134–140CrossRefGoogle Scholar
  44. Hamilton TL, Peters JW, Skidmore ML, Boyd ES (2013) Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 7:1402–1412PubMedPubMedCentralCrossRefGoogle Scholar
  45. Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K, van Gelder W et al (2016) Aerobic and anaerobic thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph. Appl Environ Microbiol 82:1486–1495PubMedCentralCrossRefGoogle Scholar
  46. Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S, The HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–351PubMedCrossRefGoogle Scholar
  47. Hell K, Insam H, Edwards A, Žárský J, Podmirseg SM, Girdwood S, Pachebat JA, Sattler B (2013) The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J 7:1814–1826PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hodson A, Brock B, Pearce D, Laybourn-Parry J, Tranter M (2015) Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environ Res Lett 10:110201CrossRefGoogle Scholar
  49. Hodson TO, Powell RD, Brachfeld SA, Tulaczyk S, Scherer RP (2016) Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from sediment cores. Earth Planet Sci Lett 444:56–63CrossRefGoogle Scholar
  50. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1346PubMedCrossRefGoogle Scholar
  51. Hubbard B, Nienow PW (1997) Alpine glacier hydrology. Quat Sci Rev 16:939–955CrossRefGoogle Scholar
  52. Inman M (2005) The plan to unlock Lake Vostok. Science 310:611–612PubMedCrossRefGoogle Scholar
  53. Jørgensen BB (2011) Deep subseafloor microbial cells on physiological standby. Proc Natl Acad Sci 108:18193–18194PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kapitsa AP, Ridley JK, Robin GD, Siegert MJ, Zotikov IA (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686CrossRefGoogle Scholar
  55. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147PubMedCrossRefGoogle Scholar
  56. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf JW, Klein C, Des Marais D (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, UK, pp 51–52Google Scholar
  57. Lafreniere MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165CrossRefGoogle Scholar
  58. Lanoil B, Skidmore M, Priscu JC, Han S, Foo W. Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic Ice Sheet. Environ Microbiol 11:609–615Google Scholar
  59. LaRowe D, Amend J (2014) Energetic constraints on life in marine deep sediments. In: Kallmeyer J, Wagner D (eds) Microbial life of the deep biosphere. DE Gruyter, Berlin, pp 279–302Google Scholar
  60. Lindbäck K, Pettersson R, Hubbard AL, Doyle SH, As D, Mikkelsen AB, Fitzpatrick AA (2015) Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys Res Lett 42:7606–7614CrossRefGoogle Scholar
  61. Makinson K, Pearce D, Hodgson DA, Bentley MJ, Smith AM, Tranter M et al (2016) Clean subglacial access: prospects for future deep hot-water drilling. Philos Trans R Soc A 374:20140304CrossRefGoogle Scholar
  62. Marteinsson VT, Runarsson A, Stefánsson A, Thorsteinsson T, Johannesson T, Magnusson SH et al (2013) Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J 7:427–437PubMedCrossRefGoogle Scholar
  63. Michaud AB (2016) Microbially mediated biogeochemical cycles in polar ice covered lakes. PhD Thesis, Montana State UniversityGoogle Scholar
  64. Michaud AB, Skidmore ML, Mitchell AC, Vick-Majors TJ, Barbante C, Turetta C et al (2016) Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology 44:347–350CrossRefGoogle Scholar
  65. Mikucki J, Auken E, Tulaczyk S, Virginia R, Schamper C, Sørensen K et al (2015) Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat Commun 6:6831PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mikucki JA, Foreman CM, Sattler B, Lyons WB, Priscu JP (2004) Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquat Geochem 10:199–220CrossRefGoogle Scholar
  67. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP et al (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400PubMedCrossRefGoogle Scholar
  68. Mikucki JA, Priscu JC (2007) Bacterial diversity associated with blood falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mitchell AC, Lafrenière MJ, Skidmore ML, Boyd ES (2013) Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology 41:855–858CrossRefGoogle Scholar
  70. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedPubMedCentralCrossRefGoogle Scholar
  71. National Research Council (2007) Exploration of Antarctic subglacial aquatic environments: environmental and scientific stewardship. National Academies Press, Washington DCGoogle Scholar
  72. Nienow PW, Sharp M, Willis IC (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf Process Landf 23:105–133CrossRefGoogle Scholar
  73. Nye JF (1992) Water veins and lenses in polycrystalline ice. In: Maeno N, Hondoh T (eds) Physics and chemistry of ice. Hokkaido University Press, Sapporo, Japan, pp 200–205Google Scholar
  74. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920PubMedCrossRefGoogle Scholar
  75. Oswald GKL, Robin GQ (1973) Lakes beneath the Antarctic ice sheet. Nature 245:251–254CrossRefGoogle Scholar
  76. Palmer SJ, Dowdeswell JA, Christoffersen P, Young DA, Blankenship DD, Greenbaum JS et al (2013) Greenland subglacial lakes detected by radar. Geophys Res Lett 40:6154–6159CrossRefGoogle Scholar
  77. Palmer S, McMillan M, Morlighem M (2015) Subglacial lake drainage detected beneath the Greenland ice sheet. Nat Commun 6:8408PubMedPubMedCentralCrossRefGoogle Scholar
  78. Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303PubMedCrossRefGoogle Scholar
  79. Paterson WSB (1994) The physics of glaciers, 3rd edn. Elsevier Science, Tarrytown, New YorkGoogle Scholar
  80. Pearce D, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J et al (2016) Microbiology: lessons from a first attempt at Lake Ellsworth. Philos Trans R Soc A 374:20140291CrossRefGoogle Scholar
  81. Priscu JC, Achberger AM, Cahoon JE, Christner BC, Edwards RL, Jones WL et al (2013) A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct Sci 25:637–647CrossRefGoogle Scholar
  82. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirschtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144PubMedCrossRefGoogle Scholar
  83. Priscu JC, Bell RE, Bulat SA, Ellis-Evans JC, Kennicutt MC, Lukin VV, Petit JR, Powell RD, Siegert MJ, Tabacco I (2003) An international plan for Antarctic subglacial lake exploration. Polar Geogr 27:69–83CrossRefGoogle Scholar
  84. Priscu JC, Christner BC (2004) Earth’s icy biosphere In: Bull AT (ed) Microbial biodiversity and bioprospecting. American Society for Microbiology Press, Washington, DC, pp 130–145Google Scholar
  85. Priscu JC, Tulaczyk S, Studinger M, Kennicutt M, Christner BC, Foreman CM (2008) Antarctic subglacial water: origin, evolution, and ecology. In: Laybourn-Parry J, Vincent W (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosytems. Oxford University Press, Oxford, pp 119–135CrossRefGoogle Scholar
  86. Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC et al (2014) Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front Microbiol 5:594PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rack FR, Duling D, Blythe D, Burnett J, Gibson D, Roberts G et al (2014) Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Ann Glaciol 55:285–297CrossRefGoogle Scholar
  88. Rennermalm AK, Smith LC, Chu VW, Box JE, Forster RR, Van den Broeke MR, Van As D, Moustafa SE (2013) Evidence of meltwater retention within the Greenland ice sheet. Cryosphere 7:1433–1445CrossRefGoogle Scholar
  89. Ridley JK, Cudlip W, Laxon SW (1993) Identification of subglacial lakes using ERS-1 radar altimeter. J Glaciol 39:625–634CrossRefGoogle Scholar
  90. Robin GQ, Drewry DJ, Meldrum DT (1977) International studies of ice sheet and bedrock. Philos Trans R Soc Lond 279:185–196CrossRefGoogle Scholar
  91. Rogers SO, Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni R, D'Elia T (2013) Ecology of subglacial Lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology 2:629–650PubMedPubMedCentralCrossRefGoogle Scholar
  92. Royston-Bishop G, Priscu JC, Tranter M, Christner BC, Siegert MJ, Lee V (2005) Incorporation of particulates into accreted ice above subglacial Lake Vostok, Antarctica. Ann Glaciol 40:145–150CrossRefGoogle Scholar
  93. Severskiy IV (2004) Water-related problems of Central Asia: some results of the (GIWA) International Water Assessment Program. Ambio 33:52–62PubMedCrossRefGoogle Scholar
  94. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110CrossRefGoogle Scholar
  95. Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160PubMedPubMedCentralCrossRefGoogle Scholar
  96. Siegert MJ, 31 others (2007) Exploration of Ellsworth Subglacial Lake: a concept paper on the development, organisation and execution of an experiment to explore, measure and sample the environment of a West Antarctic subglacial lake. Rev Environ Sci Biotechnol 6:161–179CrossRefGoogle Scholar
  97. Siegert MJ, Clarke RJ, Mowlem M, Ross N, Hill CS, Tait A et al (2012) Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments. Rev Geophys 50:RG1003CrossRefGoogle Scholar
  98. Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609PubMedCrossRefGoogle Scholar
  99. Siegert MJ, Ross N, Le Brocq AM (2016) Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos Trans R Soc A 374:20140306CrossRefGoogle Scholar
  100. Siegfried MR, Fricker HA, Carter SP, Tulaczyk S (2016) Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys Res Lett 43:2640–2648CrossRefGoogle Scholar
  101. Skidmore M (2011) Microbial communities in Antarctic subglacial aquatic environments (SAE). In: Siegert MJ, Kennicutt MC (eds) Antarctic subglacial aquatic environments. American Geophysical Union Press, Washington, DC, pp 61–68CrossRefGoogle Scholar
  102. Skidmore ML, Anderson SP, Sharp MJ, Foght JM, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997PubMedPubMedCentralCrossRefGoogle Scholar
  103. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220PubMedPubMedCentralCrossRefGoogle Scholar
  104. Skidmore M, Sharp MJ (1999) Drainage system behaviour of a high Arctic polythermal glacier. Ann Glaciol 28:209–215CrossRefGoogle Scholar
  105. Skidmore M, Tranter M, Tulaczyk S, Lanoil B (2010) Hydrochemistry of ice stream beds—evaporitic or microbial effects? Hydrol Process 24:517–523Google Scholar
  106. Smith BE, Fricker HA, Joughin IR, Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J Glaciol 55:573–595CrossRefGoogle Scholar
  107. Souchez R, Jean-Baptiste P, Petit JR, Lipenkov VY, Jouzel J (2002) What is the deepest part of the Vostok ice core telling us? Earth Sci Rev 60:131–146CrossRefGoogle Scholar
  108. Stibal M, Hasan F, Wadham JL, Sharp MJ, Anesio AM (2012) Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles 16:255–265PubMedCrossRefGoogle Scholar
  109. Studinger M, Bell RE, Tikku AA (2004) Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys Res Lett 31:L12401CrossRefGoogle Scholar
  110. Telling J, Boyd E, Bone N, Jones E, Tranter M, MacFarlane J et al (2015) Rock comminution as a source of hydrogen for subglacial ecosystems. Nat Geosci 8:851–855CrossRefGoogle Scholar
  111. Thorsteinsson T, Elefsen SO, Gaidos E, Lanoil B, Jóhannesson T, Kjartansson V, Marteinsson V, Stefánsson A, Thorsteinsson T (2008) A hot water drill with built-in sterilization: design, testing and performance. Jökull 57:71–82Google Scholar
  112. Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. Hydrol Process 16:959–993CrossRefGoogle Scholar
  113. Tranter M, Skidmore M, Wadham J (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998CrossRefGoogle Scholar
  114. Tulaczyk S, Mikucki JA, Siegfried MR, Priscu JC, Barcheck CG, Beem LH et al (2014) WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol 55:51–58CrossRefGoogle Scholar
  115. Turtle EP, Pierazzo E (2001) Thickness of a Europan ice shell from impact crater simulations. Science 294:1326–1328PubMedCrossRefGoogle Scholar
  116. Ueda HT, Garfield DE (1970) Deep core drilling at Byrd Station Antarctica. In: Gow AJ (ed) International symposium on Antarctic glaciological exploration (ISAGE), Hanover, New Hampshire, USA, 3–7 September 1968, Cambridge, UK, pp 53–62Google Scholar
  117. Vick-Majors T (2016) Biogeochemical processes in Antarctic aquatic environments: linkages and limitations. Dissertation, Montana State UniversityGoogle Scholar
  118. Vick-Majors TJ, Mitchell AC, Achberger AM et al (2016) Physiological ecology of microorganisms in Subglacial Lake Whillans. Front Microbiol 7:1457–1416PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wadham J, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, Lis G, Lawson E, Ridgwell A, Dubnick A, Sharp M, Anesio A, Butler (2012) Potential methane reservoirs beneath Antarctica. Nature 488:633-637Google Scholar
  120. Wadham JL, Bottrell SH, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355CrossRefGoogle Scholar
  121. Willis MJ, Bevis MG, Bell RE, Herried BG, Willis MJ (2015) Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518:223–227PubMedCrossRefGoogle Scholar
  122. Wright A, Siegert MJ (2011) The identification and physiographical setting of Antarctic subglacial lakes: an update based on recent discoveries. Geophys Monogr Ser 192:9–26Google Scholar
  123. Wright A, Siegert M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct Sci 24:659–664CrossRefGoogle Scholar
  124. Wright AP, Young DA, Roberts JL, Schroeder DM, Bamber JL, Dowdeswell JA, Young NW, Le Brocq AM, Warner RC, Payne AJ, Blankenship DD (2012) Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J Geophys Res Earth Surf 117:F01033Google Scholar
  125. Zotikov IA (2006) The Antarctic subglacial Lake Vostok: glaciology, biology, and planetology. Springer, Chichester, UKGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amanda M. Achberger
    • 1
  • Alexander B. Michaud
    • 2
  • Trista J. Vick-Majors
    • 3
  • Brent C. Christner
    • 4
  • Mark L. Skidmore
    • 5
  • John C. Priscu
    • 6
  • Martyn Tranter
    • 7
  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Bioscience, Center for GeomicrobiologyAarhus UniversityAarhus C AarhusDenmark
  3. 3.Département des Sciences BiologiquesUniversité du Quèbec à MontrèalMontréalCanada
  4. 4.Department of Microbiology and Cell ScienceBiodiversity Institute, University of FloridaGainesvilleUSA
  5. 5.Department of Earth SciencesMontana State UniversityBozemanUSA
  6. 6.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  7. 7.Bristol Glaciology CentreSchool of Geographical Sciences, University of BristolBristolUK

Personalised recommendations