Genomics of Psychrophilic Bacteria and Archaea

  • John P. BowmanEmail author


Genomes are available for a wide range of psychrophilic bacteria and archaea. As of early 2017, approximately 130 cold-adapted species have genome sequences. Several studies complement this data with functional studies. In this review the cold adaptation traits of psychrophilic microorganisms are explored from a genome-centric point of view including surveys of traits across genomes. A broader view of psychrophiles in terms of growth rates amongst life on Earth explaining what a psychrophile represents is presented. Trait surveys, limited to the perspective of gene gain, reveal prevalence of genes demonstratively providing better growth at low temperature including compatible solute uptake and synthesis, antifreeze proteins and polyunsaturated fatty acids and investigate their functional relevance to psychrophily. This includes revealing prevalent antifreeze DUF3494-type proteins that occur in all domains of life but is limited to cold-adapted taxa and is absent in higher-temperature adapted life.


  1. Aliyu H, De Maayer P, Cowan D (2016) The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92:fiw032PubMedCrossRefGoogle Scholar
  2. Allen MA, Lauro FM, Williams TJ et al (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035PubMedCrossRefGoogle Scholar
  3. Anderson D, Ferreras E, Trindade M et al (2015) A novel bacterial water hypersensitivity-like protein shows in vivo protection against cold and freeze damage. FEMS Microbiol Lett 362:fnv110PubMedCrossRefGoogle Scholar
  4. Angelidis AS, Smith LT, Smith GM (2002) Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Int J Food Microbiol 75:1–9PubMedCrossRefGoogle Scholar
  5. Arrhenius S (1889) Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248Google Scholar
  6. Ayala-del-Río HL, Chain PS, Grzymski JJ et al (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bakermans C, Tsapin AI, Souza-Egipsy V et al (2003) Reproduction and metabolism at -10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326PubMedCrossRefGoogle Scholar
  8. Bar Dolev M, Bernheim R, Guo S et al (2016a) Putting life on ice: bacteria that bind to frozen water. J Roy Soc Interface 13:20160210CrossRefGoogle Scholar
  9. Bar Dolev M, Braslavsky I, Davies PL (2016b) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542PubMedCrossRefGoogle Scholar
  10. Bednarska NG, Schymkowitz J, Rousseau F et al (2013) Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159:1795–1806PubMedCrossRefGoogle Scholar
  11. Berezovsky IN, Chen WW, Choi PJ et al (2005) Entropic stabilization of proteins and its proteomic consequences. PLoS Comput Biol 1:e47PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berlemont R, Pipers D, Delsaute M et al (2011) Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements. Rev Argent Microbiol 43:94–103PubMedGoogle Scholar
  14. Binepal G, Gill K, Crowley P et al (2016) Trk2 Potassium Transport System in Streptococcus mutans and its role in potassium homeostasis, biofilm formation, and stress tolerance. J Bacteriol 198:1087–1100PubMedPubMedCentralCrossRefGoogle Scholar
  15. Borges N, Jorge CD, Gonçalves LG et al (2014) Mannosylglycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles 18:835–852PubMedCrossRefGoogle Scholar
  16. Bosi E, Fondi M, Orlandini V et al (2017) The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics 18:93PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bowman JS, Ducklow HW (2015) Microbial communities can be described by metabolic structure: a general framework and application to a seasonally variable, depth-stratified microbial community from the coastal west Antarctic Peninsula. PLoS One 10:e0135868PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bowman JS, Berthiaume CT, Armbrust EV et al (2014) The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis. FEMS Microbiol Ecol 89:376–387PubMedCrossRefGoogle Scholar
  19. Bowman JP, McCammon SA, Brown MV et al (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedPubMedCentralGoogle Scholar
  20. Bräuer SL, Cadillo-Quiroz H, Ward RJ (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61:45–52PubMedCrossRefGoogle Scholar
  21. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304PubMedCrossRefGoogle Scholar
  22. Burg DW, Lauro FM, Williams TJ et al (2010) Analyzing the hydrophobic proteome of the Antarctic archaeon Methanococcoides burtonii using differential solubility fractionation. J Proteome Res 9:664–676PubMedCrossRefGoogle Scholar
  23. Campanaro S, Williams TJ, Burg DW et al (2011) Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Environ Microbiol 13:2018–2038PubMedCrossRefGoogle Scholar
  24. Cánovas D, Vargas C, Iglesias-Guerra F et al (1997) Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem 272:25794–25801PubMedCrossRefGoogle Scholar
  25. Castillo D, Christiansen RH, Dalsgaard I et al (2016) Comparative genome analysis provides insights into the pathogenicity of Flavobacterium psychrophilum. PLoS One 11:e0152515PubMedPubMedCentralCrossRefGoogle Scholar
  26. Checchetto V, Segalla A, Sato Y et al (2016) Involvement of potassium transport systems in the response of Synechocystis PCC 6803 cyanobacteria to external pH change, high-intensity light stress and heavy metal stress. Plant Cell Physiol 57:862–877PubMedCrossRefGoogle Scholar
  27. Chen Z, Yu H, Li L, Hu S et al (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641PubMedGoogle Scholar
  28. Chen Z, Feng D, Zhang B et al (2015) Proteomic insights into the temperature responses of a cold-adaptive archaeon Methanolobus psychrophilus R15. Extremophiles 19:249–259PubMedCrossRefGoogle Scholar
  29. Cheung RC, Ng TB, Wong JH (2017) Antifreeze proteins from diverse organisms and their applications: an overview. Curr Protein Pept Sci 18:262–283PubMedCrossRefGoogle Scholar
  30. Choudhari S, Lohia R, Grigoriev A (2014) Comparative metagenome analysis of an Alaskan glacier. J Bioinforma Comput Biol 12:1441003CrossRefGoogle Scholar
  31. Chrismas NA, Barker G, Anesio AM et al (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 17:533PubMedPubMedCentralCrossRefGoogle Scholar
  32. Christner BC, Cai R, Morris CE et al (2008) Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc Natl Acad Sci U S A 105:18854–18859PubMedPubMedCentralCrossRefGoogle Scholar
  33. Colangelo-Lillis J, Eicken H, Carpenter SD et al (2016) Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiol Ecol 92:fiw053PubMedCrossRefGoogle Scholar
  34. Corkrey R, Olley J, Ratkowsky D et al (2012) Universality of thermodynamic constants governing biological growth rates. PLoS One 7:e32003PubMedPubMedCentralCrossRefGoogle Scholar
  35. Corkrey R, McMeekin TA, Bowman JP et al (2014) Protein thermodynamics can be predicted directly from biological growth rates. PLoS One 9:e96100PubMedPubMedCentralCrossRefGoogle Scholar
  36. Corkrey R, McMeekin TA, Bowman JP et al (2016) The biokinetic spectrum for temperature. PLoS One 11:e0153343PubMedPubMedCentralCrossRefGoogle Scholar
  37. Corkrey R, McMeekin TA, Bowman JP et al (2017) The maximum growth rate of life on Earth. Int J Astrobiol. doi: 10.1017/S1473550416000501 Google Scholar
  38. Cvetkovska M, Hüner NPA, Smith DR (2017) Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol. doi: 10.1007/s00300-016-2045-4 Google Scholar
  39. D’Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  40. DasSarma S, Capes MD, Karan R et al (2013) Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One 8:e887CrossRefGoogle Scholar
  41. De Vendittis E, Castellano I, Cotugno R et al (2008) Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J Theor Biol 250:156–171PubMedCrossRefGoogle Scholar
  42. DeMaere MZ, Williams TJ, Allen MA (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci U S A 110:16939–16944PubMedPubMedCentralCrossRefGoogle Scholar
  43. Desmond-Le Quéméner E, Bouchez T (2014) A thermodynamic theory of microbial growth. ISME J 8:1747–1751PubMedPubMedCentralCrossRefGoogle Scholar
  44. Do H, Kim SJ, Kim HJ, et al (2014) Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1 Acta Crystallogr D Biol Crystallogr 70:1061–1073Google Scholar
  45. Drotz SH, Sparrman T, Nilsson MB et al (2010) Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proc Natl Acad Sci U S A 107:21046–21051PubMedPubMedCentralCrossRefGoogle Scholar
  46. Empadinhas N, Mendes V, Simões C et al (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673PubMedCrossRefGoogle Scholar
  47. Engle M, Li Y, Rainey F (1996) Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033PubMedCrossRefGoogle Scholar
  48. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:512840Google Scholar
  49. Feng S, Powell SM, Wilson R et al (2013) Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent. ISME J 7:2206–2213PubMedPubMedCentralCrossRefGoogle Scholar
  50. Feng S, Powell SM, Wilson R et al (2014) Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol Evol 6:133–148PubMedPubMedCentralCrossRefGoogle Scholar
  51. Feng S, Powell SM, Wilson R et al (2015) Proteomic insight into functional changes of proteorhodopsin-containing bacterial species Psychroflexus torquis under different illumination and salinity levels. J Proteome Res 14:3848–3858PubMedCrossRefGoogle Scholar
  52. Ferrer M, Chernikova TN, Yakimov MM et al (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267PubMedCrossRefGoogle Scholar
  53. Fondi M, Maida I, Perrin E et al (2015) Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Environ Microbiol 17:751–766PubMedCrossRefGoogle Scholar
  54. Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci U S A 108:7363–7367PubMedPubMedCentralCrossRefGoogle Scholar
  55. Georlette D, Blaise V, Collins T et al (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42PubMedCrossRefGoogle Scholar
  56. Ghobakhlou AF, Johnston A, Harris L et al (2015) Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 16:383PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+−dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72PubMedCrossRefGoogle Scholar
  58. Glass JB, Yu H, Steele JA, Dawson KS et al (2014) Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol 16:1592–1611PubMedCrossRefGoogle Scholar
  59. Godin-Roulling A, Schmidpeter PA, Schmid FX et al (2015) Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environ Microbiol 17:2407–2420PubMedCrossRefGoogle Scholar
  60. Goordial J, Davila A, Greer CW et al (2017) Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol 19:443–458PubMedCrossRefGoogle Scholar
  61. Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J Bacteriol 184:3078–3085PubMedPubMedCentralCrossRefGoogle Scholar
  62. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond Ser B Biol Sci 359:1249–1266CrossRefGoogle Scholar
  63. Han J, Jung J, Hyun S, Park H, Park W (2012) Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils. J Microbiol 50:916–924PubMedCrossRefGoogle Scholar
  64. Hanada Y, Nishimiya Y, Miura A et al (2014) Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 281:3576–3590PubMedCrossRefGoogle Scholar
  65. Heitzer A, Kohler HP, Reichert P et al (1991) Utility of phenomenological models for describing temperature dependence of bacterial growth. Appl Environ Microbiol 57:2656–2665PubMedPubMedCentralGoogle Scholar
  66. Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193:1552–1562PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hoffmann T, Bremer E (2017) Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol Chem 398:193–214PubMedCrossRefGoogle Scholar
  68. Hughes RA, Hallett K, Cogan T et al (2009) The response of Campylobacter jejuni to low temperature differs from that of Escherichia coli. Appl Environ Microbiol 75:6292–6298PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388PubMedCrossRefGoogle Scholar
  70. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898PubMedGoogle Scholar
  71. Inda ME, Vandenbranden M, Fernández A et al (2014) A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc Natl Acad Sci U S A 111:3579–3584PubMedPubMedCentralCrossRefGoogle Scholar
  72. Juneja VK, Porto-Fett AC, Gartner K et al (2010) Potential for growth of Clostridium perfringens from spores in pork scrapple during cooling. Foodborne Pathog Dis 7:153–157PubMedCrossRefGoogle Scholar
  73. Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kahlke T, Thorvaldsen S (2012) Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome. PLoS One 7:e51761PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kashulin A, Seredkina N, Sørum H (2017) Cold-water vibriosis. The current status of knowledge. J Fish Dis 40:119–126PubMedCrossRefGoogle Scholar
  76. Katayama T, Kato T, Tanaka M et al (2010) Tomitella biformata gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from a permafrost ice wedge. Int J Syst Evol Microbiol 60:2803–2807PubMedCrossRefGoogle Scholar
  77. Kawahara H, Iwanaka Y, Higa S et al (2007) A novel, intracellular antifreeze protein in an Antarctic bacterium, Flavobacterium xanthum. Cryo Lett 28:39–49Google Scholar
  78. Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11:819–826PubMedCrossRefGoogle Scholar
  79. Klippel B, Sahm K, Basner A et al (2014) Carbohydrate-active enzymes identified by metagenomic analysis of deep-sea sediment bacteria. Extremophiles 18:853–863PubMedCrossRefGoogle Scholar
  80. Koh EY, Atamna-Ismaeel N, Martin A et al (2010) Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl Environ Microbiol 76:5918–5925PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kondo H, Hanada Y, Sugimoto H et al (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109:9360–9365PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kotsyurbenko OR, Simankova MV, Nozhevnikova AN et al (1995) New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 163:29–34CrossRefGoogle Scholar
  83. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
  84. Labrenz M, Lawson PA, Tindall BJ et al (2003) Saccharospirillum impatiens gen. nov., sp. nov., a novel gamma-Proteobacterium isolated from hypersaline Ekho Lake (East Antarctica). Int J Syst Evol Microbiol 53:653–660PubMedCrossRefGoogle Scholar
  85. Lamosa P, Rodrigues MV, Gonçalves LG et al (2013) Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1-6)glucosyl-α(1-2)glucosylglycerate in Persephonella marina. Extremophiles 17:137–146PubMedCrossRefGoogle Scholar
  86. Langille MG, Hsiao WW, Brinkman FS (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382PubMedCrossRefGoogle Scholar
  87. Lay CY, Mykytczuk NC, Yergeau É et al (2013) Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol 79:3637–3648PubMedPubMedCentralCrossRefGoogle Scholar
  88. Le PT, Makhalanyane TP, Guerrero LD et al (2016) Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol Evol 8:2737–2747PubMedCrossRefGoogle Scholar
  89. Lee DH, Choi SL, Rha E et al (2015) A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol 15:1PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lopatina A, Medvedeva S, Shmakov S et al (2016) Metagenomic analysis of bacterial communities of Antarctic surface snow. Front Microbiol 7:398PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lorv JSH, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica 2014:1–20CrossRefGoogle Scholar
  92. Mangiagalli M, Bar-Dolev M, Tedesco P et al (2017) Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. FEBS J 284:163–177PubMedCrossRefGoogle Scholar
  93. Marks R (2008) Dissolved oxygen supersaturation and its impact on bubble formation in the southern Baltic sea coastal waters. Hydrol Res 39:229–236CrossRefGoogle Scholar
  94. Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72PubMedCrossRefGoogle Scholar
  95. McBride MJ, Nakane D (2015) Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 28:72–77PubMedCrossRefGoogle Scholar
  96. McMeekin TA, Presser K, Ratkowsky D et al (2000) Quantifying the hurdle concept by modelling the bacterial growth/no growth interface. Int J Food Microbiol 55:93–98PubMedCrossRefGoogle Scholar
  97. Methé BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918PubMedPubMedCentralCrossRefGoogle Scholar
  98. Metpally RP, Reddy BV (2009) Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 10:11PubMedPubMedCentralCrossRefGoogle Scholar
  99. Middleton AJ, Marshall CB, Faucher F et al (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724PubMedCrossRefGoogle Scholar
  100. Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze–thaw cycles. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, New York, NY, pp 343–364CrossRefGoogle Scholar
  101. Moghadam MS, Albersmeier A, Winkler A (2016) Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17:117PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moreno Switt AI, Andrus AD, Ranieri ML et al (2014) Genomic comparison of sporeforming bacilli isolated from milk. BMC Genomics 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  103. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralGoogle Scholar
  104. Mou YZ, Qiu XX, Zhao ML et al (2012) Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 16:895–901PubMedCrossRefGoogle Scholar
  105. Muryoi N, Sato M, Kaneko S et al (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ng C, DeMaere MZ, Williams TJ et al (2010) Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J 4:1002–1019PubMedCrossRefGoogle Scholar
  108. Nichols DS, Brown JL, Nichols PD, McMeekin TA (1997) Production of eicosapentaenoic and arachidonic acids by an Antarctic bacterium: response to growth temperature. FEMS Microbiol Lett 152:349–354CrossRefGoogle Scholar
  109. Nunn BL, Slattery KV, Cameron KA et al (2015) Proteomics of Colwellia psychrerythraea at subzero temperatures – a life with limited movement, flexible membranes and vital DNA repair. Environ Microbiol 17:2319–2335PubMedCrossRefGoogle Scholar
  110. Panikov NS, Sizova MV (2006) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512PubMedCrossRefGoogle Scholar
  111. Park J, Kawamoto J, Esaki N, Kurihara T (2012) Identification of cold-inducible inner membrane proteins of the psychrotrophic bacterium, Shewanella livingstonensis Ac10, by proteomic analysis. Extremophiles 16:227–236PubMedCrossRefGoogle Scholar
  112. Philosof A, Béjà O (2013) Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ Microbiol Rep 5:475–482PubMedCrossRefGoogle Scholar
  113. Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52:49–58PubMedCrossRefGoogle Scholar
  114. Piette F, D’Amico S, Struvay C, Mazzucchelli G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC12. Mol Microbiol 7:120–132CrossRefGoogle Scholar
  115. Pinhassi J, DeLong EF, Béjà O et al (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev 80:929–954PubMedCrossRefGoogle Scholar
  116. Porrini L, Cybulski LE, Altabe SG et al (2014) Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 3(2):213–224PubMedPubMedCentralCrossRefGoogle Scholar
  117. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305PubMedCrossRefGoogle Scholar
  118. Qin QL, Xie BB, Yu Y et al (2014) Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environ Microbiol 16:1642–1653PubMedCrossRefGoogle Scholar
  119. Ratkowsky DA, Olley J, McMeekin TA et al (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5PubMedPubMedCentralGoogle Scholar
  120. Ratkowsky DA, Lowry RK, McMeekin TA et al (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMedPubMedCentralGoogle Scholar
  121. Raymond JA (2016) Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum. Environ Microbiol Rep 8:14–19PubMedCrossRefGoogle Scholar
  122. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221PubMedCrossRefGoogle Scholar
  123. Riley M, Staley JT, Danchin A et al (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210PubMedPubMedCentralCrossRefGoogle Scholar
  124. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rodrigues DF, da C Jesus E, Ayala-Del-Río HL et al (2009) Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J 3:658–665PubMedCrossRefGoogle Scholar
  126. Roller BK, Schmidt TM (2015) The physiology and ecological implications of efficient growth. ISME J 9:1481–1487PubMedPubMedCentralCrossRefGoogle Scholar
  127. Ross T, Zhang D, McQuestin OJ (2008) Temperature governs the inactivation rate of vegetative bacteria under growth-preventing conditions. Int J Food Microbiol 128:129–135PubMedCrossRefGoogle Scholar
  128. Rothman JE, Schekman R (2011) Molecular mechanism of protein folding in the cell. Cell 146:851–854PubMedCrossRefGoogle Scholar
  129. Sælensminde G, Halskau Ø Jr, Jonassen I (2009) Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles 13:11–20PubMedCrossRefGoogle Scholar
  130. Sakaguchi M, Matsuzaki M, Niimiya K (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588CrossRefGoogle Scholar
  131. Saunders NFW, Thomas T, Curmi PM et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588PubMedPubMedCentralCrossRefGoogle Scholar
  132. Schipper LA, Hobbs JK, Rutledge S et al (2014) Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 20:3578–3586PubMedCrossRefGoogle Scholar
  133. Sengupta P, Garrity P (2013) Sensing temperature. Curr Biol 23:R304–R307PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shulse CN, Allen EE (2011a) Diversity and distribution of microbial long-chain fatty acid biosynthetic genes in the marine environment. Environ Microbiol 13:684–695PubMedCrossRefGoogle Scholar
  135. Shulse CN, Allen EE (2011b) Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS One 6:e20146PubMedPubMedCentralCrossRefGoogle Scholar
  136. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  137. Siddiqui KS, Poljak A, Guilhaus M et al (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64:486–501PubMedCrossRefGoogle Scholar
  138. Simon C, Wiezer A, Strittmatter AW et al (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526PubMedPubMedCentralCrossRefGoogle Scholar
  139. Singh S, Cornilescu CC, Tyler RC (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609PubMedPubMedCentralCrossRefGoogle Scholar
  140. Steven B, Pollard WH, Greer CW et al (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 10:3388–3403PubMedCrossRefGoogle Scholar
  141. Sun X, Griffith M, Pasternak JJ et al (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41:776–784PubMedCrossRefGoogle Scholar
  142. Taha SKS, Campanaro S et al (2016) Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii. Environ Microbiol 18:2810–2824PubMedCrossRefGoogle Scholar
  143. Touchon M, Barbier P, Bernardet JF et al (2011) Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 77:7656–7662PubMedPubMedCentralCrossRefGoogle Scholar
  144. Tribelli PM, Solar Venero EC, Ricardi MM et al (2015) Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 10:e0145353PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tschitschko B, Williams TJ, Allen MA et al (2016) Ecophysiological distinctions of haloarchaea from a hypersaline Antarctic lake as determined by metaproteomics. Appl Environ Microbiol 82:3165–3173PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tuorto SJ, Darias P, McGuinness LR et al (2013) Bacterial genome replication at subzero temperatures in permafrost. ISME J 8:139–149PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ugalde JA, Gallardo MJ, Belmar C et al (2013) Microbial life in a fjord: metagenomic analysis of a microbial mat in Chilean Patagonia. PLoS One 8:e71952PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ujihara T, Nagano M, Wada H et al (2014) Identification of a novel type of polyunsaturated fatty acid synthase involved in arachidonic acid biosynthesis. FEBS Lett 588:4032–4036PubMedCrossRefGoogle Scholar
  150. Vincent AT, Trudel MV, Freschi L et al (2016) Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genomics 17:44PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vollmers J, Voget S, Dietrich S et al (2013) Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8:e63422PubMedPubMedCentralCrossRefGoogle Scholar
  152. Vyrides I, Stuckey DC (2017) Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit Rev Biotechnol 2:1–15CrossRefGoogle Scholar
  153. Weinstock MT, Hesek ED, Wilson CM et al (2016) Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13:849–881PubMedCrossRefGoogle Scholar
  154. Williams TJ, Burg DW, Ertan H et al (2010a) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part II: The effect of different methylated growth substrates. J Proteome Res 9:653–663PubMedCrossRefGoogle Scholar
  155. Williams TJ, Burg DW, Raftery MJ et al (2010b) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: The effect of growth temperature. J Proteome Res 9:640–652PubMedCrossRefGoogle Scholar
  156. Williams TJ, Lauro FM, Ertan H et al (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 13:2186–2203PubMedCrossRefGoogle Scholar
  157. Wilson SL, Walker VK (2010) Selection of low-temperature resistance in bacteria and potential applications. Environ Technol 31:943–956PubMedCrossRefGoogle Scholar
  158. Wilson SL, Grogan P, Walker VK (2012) Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils. Can J Microbiol 58:402–412PubMedCrossRefGoogle Scholar
  159. Wood JM, Bremer E, Csonka LN, Kraemer R et al (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–460PubMedCrossRefGoogle Scholar
  160. Wright KE, Williamson C, Grasby SE et al (2013) Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 4:63PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wu Z, Kan FW, She YM et al (2012) Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community. Prikl Biokhim Mikrobiol 48:403–410PubMedGoogle Scholar
  162. Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247PubMedCrossRefGoogle Scholar
  163. Yang X, Sheng W, Sun GY, Lee JCM (2011) Effects of fatty acid unsaturation numbers on membrane fluidity and α-secretase-dependent amyloid precursor protein processing. Neurochem Int 8:321–329CrossRefGoogle Scholar
  164. Zakhartsev M, Yang X, Reuss M et al (2015) Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. J Therm Biol 52:117–129PubMedCrossRefGoogle Scholar
  165. Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3:e5PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhang G, Jiang N, Liu X, Dong X (2008) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:114–120CrossRefGoogle Scholar
  167. Zhang DC, Liu HC, Xin YH, Yu Y, Zhou PJ, Zhou YG (2009) Planomicrobium glaciei sp. nov., a psychrotolerant bacterium isolated from a glacier. Int J Syst Evol Microbiol 59:1387–1390PubMedCrossRefGoogle Scholar
  168. Zhang DL, Ross T, Bowman JP (2010) Physiological aspects of Listeria monocytogenes during inactivation accelerated by mild temperatures and otherwise non-growth permissive acidic and hyperosmotic conditions. Int J Food Microbiol 141:177–185PubMedCrossRefGoogle Scholar
  169. Zhang L, Wang X, Yu M et al (2015) Genomic analysis of Luteimonas abyssi XH031(T): insights into its adaption to the subseafloor environment of South Pacific Gyre and ecological role in biogeochemical cycle. BMC Genomics 16:1092PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhao JS, Deng Y, Manno D et al (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 5:e9109PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology 151:615–623PubMedCrossRefGoogle Scholar
  172. Zimmerly S, Wu L (2015) An unexplored diversity of reverse transcriptases in bacteria. MicrobiolSpec 3. doi: 10.1128/microbiolspec.MDNA3-0058-2014

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Land and Food, University of TasmaniaHobartAustralia

Personalised recommendations