Polar Microalgae: Functional Genomics, Physiology, and the Environment

  • Amanda Hopes
  • David N. Thomas
  • Thomas MockEmail author


Microalgae underpin most foodwebs in polar regions as terrestrial primary production is too limited to support these complex and productive ecosystems. The success of microalgae in these extreme and highly variable ecosystems is rooted in their evolution and adaptation. The recent application of omics approaches in addition to biochemical and physiological measurements enabled a step change in our understanding of how these important organisms are adapted to their environment and how they have evolved from non-polar anchestors. This chapter is focused on diatoms and green algae as both groups of microalgae are most prevalent in polar regions. First genomes, transcriptomes, and reverse genetic tools have recently become available for representative species from both groups. They serve as important platforms to advance studies on their ecology, evolution, and adaptation. We highlight some of the key findings from these studies and link them with biochemical and physiological data to give insights into how genes and their products have shaped important microalgae in their diverse polar environments such as oceans, sea ice, permanently frozen lakes, snow and glaciers. Data from these studies will pave the way for understanding how these key organisms and their communities are going to respond to global climate change. They already provide novel genetic resources for various different biotechnological applications.


  1. Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42. doi: 10.1016/S1360-1385(00)01808-2 PubMedCrossRefGoogle Scholar
  2. Allen AE, Dupont CL, Oborník M et al (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207PubMedCrossRefGoogle Scholar
  3. An M, Mou S, Zhang X et al (2013) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83. doi: 10.1016/j.biortech.2013.09.027 PubMedCrossRefGoogle Scholar
  4. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  5. Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486. doi: 10.1017/S0954102004002263 CrossRefGoogle Scholar
  6. Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC (2012) Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (Eps) of three sea-ice diatom species, and evidence for a cryoprotective role for Eps. J Phycol 48:1494–1509. doi: 10.1111/jpy.12004 PubMedCrossRefGoogle Scholar
  7. Bayer-Giraldi M, Uhlig C, John U et al (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052. doi: 10.1111/j.1462-2920.2009.02149.x PubMedCrossRefGoogle Scholar
  8. Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219. doi: 10.1016/j.cryobiol.2011.08.006 PubMedCrossRefGoogle Scholar
  9. Beil U, Thiede J (1990) Geophysical history of polar oceans: Arctic versus Antarctic. Kluwer Academic Publishers, NetherlandsCrossRefGoogle Scholar
  10. Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. doi: 10.1186/gb-2012-13-5-r39 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bluhm BA, Swadling KM, Gradinger R (2017) Sea ice as a habitat for macrograzers. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 394–414Google Scholar
  12. Bowman JP, Sa MC, Brown MV et al (1997) Diversity and association of psychrophilic bacteri in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedPubMedCentralGoogle Scholar
  13. Boyd PW (2002) Review of environmental factors controlling phytoplankton processes in the Southern Ocean 1. J Phycol 38:844–861. doi: 10.1046/j.1529-8817.2002.t01-1-01203.x CrossRefGoogle Scholar
  14. Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315:612–617. doi: 10.1126/science.1131669 PubMedCrossRefGoogle Scholar
  15. Brierley AS, Thomas DN (2002) Ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–276PubMedCrossRefGoogle Scholar
  16. Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571. doi: 10.1007/s00300-004-0622-4 CrossRefGoogle Scholar
  17. Cao K, He M, Yang W et al (2016) The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. J Appl Phycol 28:877–888. doi: 10.1007/s10811-015-0627-0 CrossRefGoogle Scholar
  18. Caron DA, Gast RJ, Garneau M-E (2017) Sea ice for a habitat for micrograzers. Sea ice. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 370–393Google Scholar
  19. Cheng CHC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8:715–720. doi: 10.1016/S0959-437X(98)80042-7 PubMedCrossRefGoogle Scholar
  20. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths H. Nature 431:414. doi: 10.1038/nature03019 PubMedCrossRefGoogle Scholar
  21. Comiso J (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 112–142CrossRefGoogle Scholar
  22. Cota GF (1985) Photoadaptation of high Arctic ice algae. Nature 315:219–222CrossRefGoogle Scholar
  23. Cottier F, Steele M, Nilsen F (2017) Sea ice and Arctic Ocean oceanography. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 197–215Google Scholar
  24. Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93. doi: 10.1038/nature04056 PubMedCrossRefGoogle Scholar
  25. De Riso V, Raniello R, Maumus F et al (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96. doi: 10.1093/nar/gkp448 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309PubMedCrossRefGoogle Scholar
  27. Devos N, Ingouff M, Loppes R, Matagne RF (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660. doi: 10.1046/j.1529-8817.1998.340655.x CrossRefGoogle Scholar
  28. Di Martino Rigano V, Vona V, Lobosco O et al (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409. doi: 10.1111/j.1365-3040.2006.01523.x CrossRefGoogle Scholar
  29. Dieckmann GS, Hellmer HH (2003) The importance of sea ice: an overview. In: Thomas DN, Dieckmann GS (eds) Sea ice – an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 1–21Google Scholar
  30. Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120. doi: 10.1016/S0304-4203(03)00105-1 CrossRefGoogle Scholar
  31. Ditullio GR, Garrison DL, Mathot S (1998) Dimethylsulfonopropionate in sea ice algae from the Ross Sea polynya. In: Lizotte M, Arrigo K (eds) Antarctic sea ice: biological processes, interaction and variability, Antarctic research series, vol 73, pp 139–146CrossRefGoogle Scholar
  32. Eddie B, Krembs C, Neuer S (2008) Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar Ecol Prog Ser 354:107–117. doi: 10.3354/meps07243 CrossRefGoogle Scholar
  33. Ehrenberg CG (1841) Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluß des mikroskopischen Lebens in Süd- und Nordamerika. Berichte über die zur Bekanntmachung geeigneten Verhandlung der K Akad der Wissenschaften zu Berlin. Monatsberichte 1841:202–207Google Scholar
  34. Ehrenberg CG (1853) Über neue Anschauungen des kleinstein nördlichen Polarlebens. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akad der Wissenschaften zu Berlin. Monatsberichte 1853:522–529Google Scholar
  35. Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13CrossRefGoogle Scholar
  36. Eicken H, Bock C, Wittig R et al (2000) Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg Sci Technol 31:207–225. doi: 10.1016/S0165-232X(00)00016-1 CrossRefGoogle Scholar
  37. Feller G, Gerday C (2003) Psychrophilic enzymes; hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  38. Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:629–636CrossRefGoogle Scholar
  39. Friedmann EI, Kappen L, Meyer MA et al (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69PubMedCrossRefGoogle Scholar
  40. Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44(2):447–454CrossRefGoogle Scholar
  41. Fujita Y (2001) Chromatic variation of the abundance of PSII complexes observed with the red alga Prophyridium cruentum. Plant Cell Physiol 42:1239–1244. doi: 10.1093/pcp/pce164 PubMedCrossRefGoogle Scholar
  42. Gao H, Wright D, Li T et al (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60. doi: 10.1016/j.algal.2014.05.003 CrossRefGoogle Scholar
  43. Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230. doi: 10.1016/0022-0981(93)90054-R CrossRefGoogle Scholar
  44. Gleitz M, v.d. Loeff MR, Thomas DN et al (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91. doi: 10.1016/0304-4203(95)00053-T CrossRefGoogle Scholar
  45. Gleitz M, Bartsch A, Dieckmann GS, Eicken H (1998) Composition and succession of sea ice diatom assemblages in the eastern and southern Weddell Sea, Antarctica. Antarct Res Ser 73:107–120CrossRefGoogle Scholar
  46. Granskog M, Kaartokallio H, Kuosa H et al (2006) Sea ice in the Baltic Sea – a review. Estuar Coast Shelf Sci 70:145–160. doi: 10.1016/j.ecss.2006.06.001 CrossRefGoogle Scholar
  47. Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL, Hensel M (2012) Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS One 7(11):e48805PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gwak IG, sic Jung W, Kim HJ et al (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639. doi: 10.1007/s10126-009-9250-x PubMedCrossRefGoogle Scholar
  49. Haas C (2017) Sea ice thickness distribution. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 42–64Google Scholar
  50. Haas C, Thomas DN, Bareiss J (2001) Surface properties and processes of perennial Antarctic sea ice in summer. J Glaciol 47:613–625. doi: 10.3189/172756501781831864 CrossRefGoogle Scholar
  51. Hällfors G (2004) Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Balt Sea Environ Proc 95:208Google Scholar
  52. Hansom J, Gordon J (1998) Antarctic environments and resources – a geographical perspective. Addison Wesley Longman, HarlowGoogle Scholar
  53. Hendey NI (1974) A revised checklist of British diatoms. J Mar Biol Assoc UK 54:277–300CrossRefGoogle Scholar
  54. Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72:233–256. doi: 10.1007/s10533-004-0362-0 CrossRefGoogle Scholar
  55. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228Google Scholar
  56. Hooker J (1847) The botany of the Antarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1838–1843 Part 1. Flora Antarctica. Reeve Brothers, LondonGoogle Scholar
  57. Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49–60. doi: 10.1186/s13007-016-0148-0 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Horner R (1985) Sea ice biota. CRC Press, Baco Raton, FLGoogle Scholar
  59. Hsiao S (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37:225–314Google Scholar
  60. Hwang YS, Jung G, Jin E (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochem Biophys Res Commun 367:635–641. doi: 10.1016/j.bbrc.2007.12.176 PubMedCrossRefGoogle Scholar
  61. Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481. doi: 10.1007/s003000050145 CrossRefGoogle Scholar
  62. Janech MG, Krell A, Mock T et al (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416. doi: 10.1111/j.1529-8817.2006.00208.x CrossRefGoogle Scholar
  63. Janknegt PJ, Van De Poll WH, Visser RJW et al (2008) Oxidative stress responses in the marine antarctic diatom Chaetoceros brevis (Bacillariophyceae) during photoacclimation. J Phycol 44:957–966. doi: 10.1111/j.1529-8817.2008.00553.x PubMedCrossRefGoogle Scholar
  64. Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on earth? Appl Environ Microbiol 57:2308–2311PubMedPubMedCentralGoogle Scholar
  65. Jones EP, Swift JH, Anderson LG et al (2003) Tracing Pacific water in the North Atlantic Ocean. J Geophys Res 108:1–10. doi: 10.1029/2001JC001141 Google Scholar
  66. Jung W, Lee SG, Kang SW et al (2012) Analysis of expressed sequence tags from the Antarctic psychrophilic green algae, Pyramimonas gelidicola. J Microbiol Biotechnol 22:902–906. doi: 10.4014/jmb.1201.01002 PubMedCrossRefGoogle Scholar
  67. Jung W, Gwak Y, Davies PL et al (2014) Isolation and characterization of antifreeze proteins from the Antarctic marine microalga Pyramimonas gelidicola. Mar Biotechnol 16:502–512. doi: 10.1007/s10126-014-9567-y PubMedCrossRefGoogle Scholar
  68. Jung W, Campbell RL, Gwak Y et al (2016) New cysteine-rich ice-binding protein secreted from antarctic microalga, chloromonas sp. PLoS ONE 11:1–26. doi: 10.1371/journal.pone.0154056 Google Scholar
  69. Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328. doi: 10.1007/s00248-001-1026-4 PubMedCrossRefGoogle Scholar
  70. Junge K, Eicken H, Deming JW (2004) Bacterial Activity at -2 to -20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557. doi: 10.1128/AEM.70.1.550 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kan GF, Miao JL, Shi CJ, Li GY (2006) Proteomic alterations of antarctic ice microalga Chlamydomonas sp. under low-temperature stress. J Integr Plant Biol 48:965–970. doi: 10.1111/j.1744-7909.2006.00255.x CrossRefGoogle Scholar
  72. Kattner G, Thomas DN, Haas C et al (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12. doi: 10.3354/meps277001 CrossRefGoogle Scholar
  73. Kennedy H, Thomas DN, Kattner G et al (2002) Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar Ecol Prog Ser 238:1–13. doi: 10.3354/meps238001 CrossRefGoogle Scholar
  74. Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31(2):181–199CrossRefGoogle Scholar
  75. Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta). Mol Phylogenet Evol 6:391–407PubMedCrossRefGoogle Scholar
  76. Kopczynska EE, Weber LH, EI-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169CrossRefGoogle Scholar
  77. Krell A (2006) Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, GermanyGoogle Scholar
  78. Krell A, Beszteri B, Dieckmann G et al (2008) A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol 43:423–433. doi: 10.1080/09670260802348615 CrossRefGoogle Scholar
  79. Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particles across the ice-water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol 138:173–185. doi: 10.1007/s002270000396 CrossRefGoogle Scholar
  80. Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80. doi: 10.1016/S0022-0981(99)00111-2 CrossRefGoogle Scholar
  81. Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci U S A 108:3653–3658. doi: 10.1073/pnas.1100701108 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Leventer A (1998) The fate of Antarctic “Sea ice diatoms” and their use as paleoenvironmental indicators. Antarct Res Ser 73:121–137CrossRefGoogle Scholar
  83. Liu S, Zhang P, Cong B et al (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14:329–337. doi: 10.1007/s00792-010-0313-8 PubMedCrossRefGoogle Scholar
  84. Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58. doi: 10.1016/j.gene.2011.05.006 PubMedCrossRefGoogle Scholar
  85. Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73. doi: 10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2 Google Scholar
  86. Lizotte M (2003a) Microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice – an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 184–210Google Scholar
  87. Lizotte M (2003b) The influence of sea ice on Ross Sea biogeochemical processes. Antarct Res Ser 78:107–122CrossRefGoogle Scholar
  88. Lizotte MP, Priscu J (1992) Spectral irradiance and biooptical properties in perennial ice-covered lakes of the dry valleys (McMurdo Sound Antarctica). Antarct Res Ser 57:1–14CrossRefGoogle Scholar
  89. Los D, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta Biomembr 1666:142–157. doi: 10.1016/j.bbamem.2004.08.002 CrossRefGoogle Scholar
  90. Lovejoy C, Massana R, Pedro C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas diversity. Appl Environ Microbiol 72:3085–3095. doi: 10.1128/AEM.72.5.3085 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lyon B, Mock T (2014) Polar microalgae: new approaches towards understanding sdaptations to an extreme and changing environment. Biology (Basel) 3:56–80. doi: 10.3390/biology3010056 Google Scholar
  92. Lyon BR, Lee P, Bennett JM et al (2011) Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. Plant Physiol 157:1926–1941. doi: 10.1104/pp.111.185025 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Meier W (2017) Losing Arctic sea ice: observations of th erecent decline and the long-term context. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 261–289Google Scholar
  94. Meredith MP, Brandon M (2017) Oceanography and sea ice in the Southern Ocean. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 216–238Google Scholar
  95. Merico A, Tyrrell T, Brown CW et al (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30:1337. doi: 10.1029/2002GL016648 CrossRefGoogle Scholar
  96. Mindl B, Anesio AM, Meirer K et al (2007) Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacieri. FEMS Microbiol Ecol 59:307–317. doi: 10.1111/j.1574-6941.2006.00262.x PubMedCrossRefGoogle Scholar
  97. Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26. doi: 10.3354/Meps177015 CrossRefGoogle Scholar
  98. Mock T, Hoch N (2005) Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth Res 85:307–317. doi: 10.1007/s11120-005-5668-9 PubMedCrossRefGoogle Scholar
  99. Mock T, Kroon BM (2002a) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51. doi: 10.1016/S0031-9422(02)00216-9 PubMedCrossRefGoogle Scholar
  100. Mock T, Kroon BM (2002b) Photosynthetic energy conversion under extreme conditions—II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60. doi: 10.1016/S0031-9422(02)00216-9 PubMedCrossRefGoogle Scholar
  101. Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741. doi: 10.1111/j.1529-8817.2004.03224.x CrossRefGoogle Scholar
  102. Mock T, Thomas D (2005) Sea ice – recent advances in microbial studies. Environ Microbiol 7:605–619PubMedCrossRefGoogle Scholar
  103. Mock T, Krell A, Glöckner G et al (2005) Analysis of expressed sequence tags (ESTS) from the polar diatom Fragilariopsis cylindrus. J Phycol 42:78–85. doi: 10.1111/j.1529-8817.2005.00164.x CrossRefGoogle Scholar
  104. Mock T, Otillar RP, Strauss J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540. doi: 10.1038/nature20803 PubMedCrossRefGoogle Scholar
  105. Morgan-Kiss RM, Ivanov AG, Pocock T et al (2005) The antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (Chlorophyceae, Chlorophyta), exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800. doi: 10.1111/j.1529-8817.2005.04174.x CrossRefGoogle Scholar
  106. Morgan-Kiss RM, Priscu JC, Pocock T et al (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252. doi: 10.1128/MMBR.70.1.222-252.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mou S, Zhang X, Ye N et al (2012) Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L. Extremophiles 16:193–203. doi: 10.1007/s00792-011-0419-7 PubMedCrossRefGoogle Scholar
  108. Müller T, Bleiß W, Martin CD et al (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32. doi: 10.1007/s003000050272 CrossRefGoogle Scholar
  109. Nelson DM, Tréguer P, Brzezinski MA et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372CrossRefGoogle Scholar
  110. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568. doi: 10.1146/annurev.arplant.47.1.541 PubMedCrossRefGoogle Scholar
  111. Nymark M, Sharma AK, Sparstad T et al (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951. doi: 10.1038/srep24951 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann E (ed) Antarctic microbiology. Wiley-Liss, New York, NY, pp 167–218Google Scholar
  113. Park S, Jung G, Hwang YS, Jin E (2010) Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. Planta 231:349–360. doi: 10.1007/s00425-009-1044-x PubMedCrossRefGoogle Scholar
  114. Perovich D (2017) Sea ice and sunlight. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 110–137Google Scholar
  115. Petrich C, Eicken H (2017) Overview of sea ice growth and properties. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 1–41Google Scholar
  116. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227CrossRefGoogle Scholar
  117. Priscu JC (1998) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  118. Ralph PJ, McMinn A, Ryan KG, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769. doi: 10.1111/j.1529-8817.2005.00106.x CrossRefGoogle Scholar
  119. Raymond J (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci 108:E198. doi: 10.1073/pnas.1106288108 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Raymond J (2014) The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles 18:987–994. doi: 10.1007/s00792-014-0668-3 PubMedCrossRefGoogle Scholar
  121. Raymond J, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:35968. doi: 10.1371/journal.pone.0035968 CrossRefGoogle Scholar
  122. Raymond J, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS ONE 8:e59186. doi: 10.1371/journal.pone.0059186 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Raymond J, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221. doi: 10.1111/j.1574-6941.2007.00345.x PubMedCrossRefGoogle Scholar
  124. Raymond J, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136. doi: 10.1111/j.1529-8817.2008.00623.x PubMedCrossRefGoogle Scholar
  125. Remias D, Lutz-Meindl U, Lutz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268. doi: 10.1080/09670260500202148 CrossRefGoogle Scholar
  126. Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256. doi: 10.3354/meps147243 CrossRefGoogle Scholar
  127. Ryan KG, Ralph P, McMinn A (2004) Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting. Polar Biol 27:679–686. doi: 10.1007/s00300-004-0636-y CrossRefGoogle Scholar
  128. Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10:69–86. doi: 10.1111/j.1751-8369.1991.tb00636.x CrossRefGoogle Scholar
  129. Säwström C, Mumford P, Marshall W et al (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 25:591–596. doi: 10.1007/s00300-002-0388-5 Google Scholar
  130. Schriek R (2000) Effects of light and temperature on the enzymatic antioxidative defense systems in the Antarctic ice diatom Entomoneis kufferathii Manguin. Rep Polar Res 349:1–130Google Scholar
  131. Scott FJ, Marchant H (eds) (2005) Antarctic marine protists. Australian Biological Resources Study/Australian Antarctic Division, CanberraGoogle Scholar
  132. Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85. doi: 10.1038/nbt766 PubMedCrossRefGoogle Scholar
  133. Shin S-E, Lim J-M, Koh HG et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810. doi: 10.1038/srep27810 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Smetacek V (1998) Diatoms and the silicate factor. Nature 391:224–225. doi: 10.1111/j.1600-0579.1998.tb00036.x CrossRefGoogle Scholar
  135. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368. doi: 10.1038/nature04161 PubMedCrossRefGoogle Scholar
  136. Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Res Part II Top Stud Oceanogr 49:3835–3848. doi: 10.1016/S0967-0645(02)00113-3 CrossRefGoogle Scholar
  137. Smith WO Jr, Codispoti LA, Nelson DM et al (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516CrossRefGoogle Scholar
  138. Sommer U (1989) Maximum growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol Oceanogr 34:1109–1112CrossRefGoogle Scholar
  139. Sorhannus U (2011) Evolution of antifreeze protein genes in the diatom genus Fragilariopsis: evidence for horizontal gene transfer, gene duplication and episodic diversifying selection. Evol Bioinforma 2011:279–289. doi: 10.4137/EBO.S8321 CrossRefGoogle Scholar
  140. Stammerjohn S, Maksym T (2017) Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 290–303Google Scholar
  141. Stoecker DK, Gustafson DE, Merrell JR et al (1997) Excystment and growth of chryophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595CrossRefGoogle Scholar
  142. Stoecker DK, Gustafson DE, Black MMD, Baier CT (1998) Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. J Phycol 34:60–69. doi: 10.1046/j.1529-8817.1998.340060.x CrossRefGoogle Scholar
  143. Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287CrossRefGoogle Scholar
  144. Stoeve J, Notz D (2015) Insights on past and future sea-ice evolution from combining observations and models. Glob Planet Chang 135:119–132CrossRefGoogle Scholar
  145. Strauss J, Gao S, Morrissey J, et al (2013) A light-driven rhodopsin proton pump from the psychrophilic diatom Fragilariopsis cylindrus. In: Proceeding of EMBO workshop: the molecular life of diatoms, Paris, France, 25–28 June 2013Google Scholar
  146. Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high-mountain plants. Planta 207:313–324. doi: 10.1007/s004250050488 CrossRefGoogle Scholar
  147. Stroeve JC, Serreze MC, Fetterer F et al (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:1–4. doi: 10.1029/2004GL021810 CrossRefGoogle Scholar
  148. Sutherland PC (1852) Journal of a voyage in Baffin’s Bay and Barrow Straits in the years 1850–51, performed by H.M. ships “Lady Franklin” and “Sophia,” under the command of Mr.William Penny in search of the missing crews of H.M. ships “Erebus” and “Terror”, vol 1 and 2. Longman, Brown, Green, and Longmans, LondonGoogle Scholar
  149. Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann Glaciol 34:409–414CrossRefGoogle Scholar
  150. Tang EPY, Vincent WF, Proulx D et al (1997) Polar cyanobacteria versus green algae for tertiary wast-water treatment in cool climates. J Appl Phycol 9:371–381CrossRefGoogle Scholar
  151. Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297. doi: 10.1007/s10811-012-9863-8 CrossRefGoogle Scholar
  152. Thomas DN, Dieckmann GS (2002) Antarctic sea ice–a habitat for extremophiles. Science 295:641–644. doi: 10.1126/science.1063391 PubMedCrossRefGoogle Scholar
  153. Thomas DN, Fogg GE, Convey P et al (2008) Biology of polar regions. Oxford University Press, OxfordCrossRefGoogle Scholar
  154. Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Elsevier Science, Tarrytown, NYGoogle Scholar
  155. Toseland A, Daines SJ, Clark JR et al (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Chang 3:979–984. doi: 10.1038/nclimate1989 CrossRefGoogle Scholar
  156. Uhlig C, Kilpert F, Frickenhaus S et al (2015) In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice. ISME J 9:2537–2540. doi: 10.1038/ismej.2015.43 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Underwood GJC, Fietz S, Papadimitriou S et al (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar Ecol Prog Ser 404:1–19. doi: 10.3354/meps08557 CrossRefGoogle Scholar
  158. Underwood GJC, Aslam SN, Michel C et al (2013) Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proc Natl Acad Sci U S A 110:15734–15739. doi: 10.1073/pnas.1302870110 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Van Oijen T, van Leeuwe M, Gieskes WWC (2003) Variation of particulate carbohydrate pools over time and depth in a diatom-dominated plankton community at the Antarctic Polar Front. Polar Biol 26:195–201. doi: 10.1007/s00300-002-0456-x Google Scholar
  160. von Quillfeldt C (2004) The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold water rather than for sea ice. Vie Milieu 54:137–143Google Scholar
  161. Vincent WF, Ja G, Pienitz R et al (2000) Ice shelf microbial ecosystems in the high arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141. doi: 10.1007/s001140050692 PubMedCrossRefGoogle Scholar
  162. Wang DS, Xu D, Wang YT et al (2015) Adaptation involved in nitrogen metabolism in sea ice alga Chlamydomonas sp. ICE-L to Antarctic extreme environments. J Appl Phycol 27:787–796. doi: 10.1007/s10811-014-0372-9 CrossRefGoogle Scholar
  163. Wang Q, Lu Y, Xin Y et al (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081. doi: 10.1111/tpj.13307 PubMedCrossRefGoogle Scholar
  164. Weissenberger J, Dieckmann G, Gradinger R, Spindler M (1992) Sea ice: a cast technique to examine and analyze brine pockets and channel structure. Limnol Oceanogr 37:179–183. doi: 10.4319/lo.1992.37.1.0179 CrossRefGoogle Scholar
  165. Werner I (2006) Seasonal dynamics, cryo-pelagic interactions and metabolic rates of arctic pack-ice and under-ice fauna – a review. Polarforschung 75:1–19Google Scholar
  166. Wheeler P, Watkins JM, Hansing RL (1997) Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep Sea Res Part II Top Stud Oceanogr 44:1571–1592. doi: 10.1016/S0967-0645(97)00051-9 CrossRefGoogle Scholar
  167. Willem S, Srahna M, Devos N et al (1999) Protein adaptation to low temperatures: a comparative study of α-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3:221–226. doi: 10.1007/s007920050119 PubMedCrossRefGoogle Scholar
  168. Williams WE, Gorton HL, Vogelmann TC (2003) Surface gas-exchange processes of snow algae. Proc Natl Acad Sci U S A 100:562–566. doi: 10.1073/pnas.0235560100 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Xu D, Wang Y, Fan X et al (2014) Long-term experiment on physiological responses to synergetic. Environ Sci Technol 48:7738–7746PubMedCrossRefGoogle Scholar
  170. Zhang P, Liu S, Cong B et al (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401. doi: 10.1007/s10126-010-9309-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Environmental Sciences, University of East AngliaNorwichUK
  2. 2.School of Ocean Sciences, College of Natural Sciences, Bangor UniversityAngleseyUK
  3. 3.Finnish Environment Institute (SYKE)HelsinkiFinland

Personalised recommendations