Pathophysiology of Carpal Tunnel Syndrome

  • Scott F. M. DuncanEmail author
  • Oam Bhate
  • Hatim Mustaly


This chapter discusses the pathophysiological mechanisms and contributing factors underlying the etiology of carpal tunnel syndrome. The etiology of carpal tunnel syndrome is complex and still has not been fully elucidated. Many factors have been implicated in the development and progression of carpal tunnel syndrome. Injury due to repetitive mechanical stress and resulting nerve injury has been historically thought to be the cause of carpal tunnel syndrome. Additionally, systemic disease states including diabetes, acromegaly, thyroid dysfunction, and rheumatoid arthritis among others have been linked to carpal tunnel syndrome. Age, gender, and genetic factors have also been associated with the development of carpal tunnel syndrome. The various elements that may predispose to carpal tunnel syndrome have been explored in depth in this chapter.


Nerve tethering Blood-nerve barrier Obesity Diabetes Thyroid Acromegaly Rheumatoid arthritis 



Body mass index


Carpal tunnel syndrome


Insulin-like growth factor 1


Interleukin 6


Messenger ribonucleic acid


Nerve conduction studies


Prostaglandin E2


Tethered median nerve stress test


Vascular endothelial growth factor


Voltage-gated sodium channel


  1. 1.
    Szabo RM, Madison M. Carpal tunnel syndrome. Orthop Clin North Am. 1992;23(1):103–9.PubMedGoogle Scholar
  2. 2.
    von Schroeder HP, Botte MJ. Carpal tunnel syndrome. Hand Clin. 1996;12(4):643–55.Google Scholar
  3. 3.
    Phalen GS. The carpal-tunnel syndrome. Seventeen years’ experience in diagnosis and treatment of six hundred fifty-four hands. J Bone Joint Surg Am. 1966;48(2):211–28.Google Scholar
  4. 4.
    Gillig JD, White SD, Rachel JN. Acute carpal tunnel syndrome: a review of current literature. Orthop Clin North Am. 2016;47(3):599–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Werner RA, Andary M. Carpal tunnel syndrome: pathophysiology and clinical neurophysiology. Clin Neurophysiol. 2002;113(9):1373–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Areny-Micas R, Silva-Donoso R, Urtubia-Manriquez V, Saavedra-Munoz J, Hernandez-Reyes L, Aliste-Silva M. Vascular changes in severe carpal tunnel syndrome: a differential diagnosis of vasculitis. Reumatol Clin. 2012;8(1):36–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Rempel D, Bach JM, Gordon L, So Y. Effects of forearm pronation/supination on carpal tunnel pressure. J Hand Surg Am. 1998;23(1):38–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Mesgarzadeh M, Schneck CD, Bonakdarpour A, Mitra A, Conaway D. Carpal tunnel: MR imaging. Part II. Carpal tunnel syndrome. Radiology. 1989;171(3):749–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Radack DM, Schweitzer ME, Taras J. Carpal tunnel syndrome: are the MR findings a result of population selection bias? AJR Am J Roentgenol. 1997;169(6):1649–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Gelberman RH, Rydevik BL, Pess GM, Szabo RM, Lundborg G. Carpal tunnel syndrome. A scientific basis for clinical care. Orthop Clin North Am. 1988;19(1):115–24.PubMedGoogle Scholar
  11. 11.
    Werner CO, Elmqvist D, Ohlin P. Pressure and nerve lesion in the carpal tunnel. Acta Orthop Scand. 1983;54(2):312–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Werner R, Armstrong TJ, Bir C, Aylard MK. Intracarpal canal pressures: the role of finger, hand, wrist and forearm position. Clin Biomech (Bristol, Avon). 1997;12(1):44–51.CrossRefGoogle Scholar
  13. 13.
    Maggi SP, Lowe JB 3rd, Mackinnon SE. Pathophysiology of nerve injury. Clin Plast Surg. 2003;30(2):109–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Rydevik B, Lundborg G, Bagge U. Effects of graded compression on intraneural blood blow. An in vivo study on rabbit tibial nerve. J Hand Surg Am. 1981;6(1):3–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Powell HC, Myers RR. Pathology of experimental nerve compression. Lab Investig. 1986;55(1):91–100.PubMedGoogle Scholar
  16. 16.
    Lundborg G. Intraneural microcirculation. Orthop Clin North Am. 1988;19(1):1–12.PubMedGoogle Scholar
  17. 17.
    Upton AR, McComas AJ. The double crush in nerve entrapment syndromes. Lancet. 1973;2(7825):359–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Ho ST, Yu HS. Ultrastructural changes of the peripheral nerve induced by vibration: an experimental study. Br J Ind Med. 1989;46(3):157–64.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lundborg G, Dahlin LB, Danielsen N, Hansson HA, Necking LE, Pyykko I. Intraneural edema following exposure to vibration. Scand J Work Environ Health. 1987;13(4):326–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Lundborg G, Dahlin LB, Hansson HA, Kanje M, Necking LE. Vibration exposure and peripheral nerve fiber damage. J Hand Surg Am. 1990;15(2):346–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Stromberg T, Lundborg G, Holmquist B, Dahlin LB. Impaired regeneration in rat sciatic nerves exposed to short-term vibration. J Hand Surg Br. 1996;21(6):746–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Wieslander G, Norback D, Gothe CJ, Juhlin L. Carpal tunnel syndrome (CTS) and exposure to vibration, repetitive wrist movements, and heavy manual work: a case-referent study. Br J Ind Med. 1989;46(1):43–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ibrahim I, Khan WS, Goddard N, Smitham P. Carpal tunnel syndrome: a review of the recent literature. Open Orthop J. 2012;6:69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Armstrong TJ, Castelli WA, Evans FG, Diaz-Perez R. Some histological changes in carpal tunnel contents and their biomechanical implications. J Occup Med. 1984;26(3):197–201.PubMedGoogle Scholar
  25. 25.
    Siegel DB, Kuzma G, Eakins D. Anatomic investigation of the role of the lumbrical muscles in carpal tunnel syndrome. J Hand Surg Am. 1995;20(5):860–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Keese GR, Wongworawat MD, Frykman G. The clinical significance of the palmaris longus tendon in the pathophysiology of carpal tunnel syndrome. J Hand Surg Br. 2006;31(6):657–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Jafari D, Taheri H, Shariatzadeh H, Najd MF. Anatomy of recurrent branch of the median nerve in patients with severe idiopathic carpal tunnel syndrome. Iran J Surg. 2008;16(3)Google Scholar
  28. 28.
    Gelberman RH, Hergenroeder PT, Hargens AR, Lundborg GN, Akeson WH. The carpal tunnel syndrome. A study of carpal canal pressures. J Bone Joint Surg Am. 1981;63(3):380–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Keir PJ, Wells RP, Ranney DA, Lavery W. The effects of tendon load and posture on carpal tunnel pressure. J Hand Surg Am. 1997;22(4):628–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Alfonso C, Jann S, Massa R, Torreggiani A. Diagnosis, treatment and follow-up of the carpal tunnel syndrome: a review. Neurol Sci. 2010;31(3):243–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Millesi H, Zoch G, Rath T. The gliding apparatus of peripheral nerve and its clinical significance. Ann Chir Main Memb Super. 1990;9(2):87–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Wehbe MA, Schlegel JM. Nerve gliding exercises for thoracic outlet syndrome. Hand Clin. 2004;20(1):51–5. viPubMedCrossRefGoogle Scholar
  33. 33.
    MacDermid JC, Doherty T. Clinical and electrodiagnostic testing of carpal tunnel syndrome: a narrative review. J Orthop Sports Phys Ther. 2004;34(10):565–88.PubMedCrossRefGoogle Scholar
  34. 34.
    LaBan MM, MacKenzie JR, Zemenick GA. Anatomic observations in carpal tunnel syndrome as they relate to the tethered median nerve stress test. Arch Phys Med Rehabil. 1989;70(1):44–6.PubMedGoogle Scholar
  35. 35.
    Arendt-Nielsen L, Gregersen H, Toft E, Bjerring P. Involvement of thin afferents in carpal tunnel syndrome: evaluated quantitatively by argon laser stimulation. Muscle Nerve. 1991;14(6):508–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Frieboes LR, Palispis WA, Gupta R. Nerve compression activates selective nociceptive pathways and upregulates peripheral sodium channel expression in Schwann cells. J Orthop Res. 2010;28(6):753–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Lundborg G, Dahlin LB. Anatomy, function, and pathophysiology of peripheral nerves and nerve compression. Hand Clin. 1996;12(2):185–93.PubMedGoogle Scholar
  38. 38.
    Dahlin LB, Shyu BC, Danielsen N, Andersson SA. Effects of nerve compression or ischaemia on conduction properties of myelinated and non-myelinated nerve fibres. An experimental study in the rabbit common peroneal nerve. Acta Physiol Scand. 1989;136(1):97–105.PubMedCrossRefGoogle Scholar
  39. 39.
    Sunderland S. The nerve lesion in the carpal tunnel syndrome. J Neurol Neurosurg Psychiatry. 1976;39(7):615–26.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lundborg G, Gelberman RH, Minteer-Convery M, Lee YF, Hargens AR. Median nerve compression in the carpal tunnel–functional response to experimentally induced controlled pressure. J Hand Surg Am. 1982;7(3):252–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hybbinette CH, Mannerfelt L. The carpal tunnel syndrome. A retrospective study of 400 operated patients. Acta Orthop Scand. 1975;46(4):610–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Ettema AM, Amadio PC, Zhao C, Wold LE, An KN. A histological and immunohistochemical study of the subsynovial connective tissue in idiopathic carpal tunnel syndrome. J Bone Joint Surg Am. 2004;86-A(7):1458–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Altinok T, Karakas HM. Ultrasonographic evaluation of age-related changes in bowing of the flexor retinaculum. Surg Radiol Anat. 2004;26(6):501–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Sarria JC, Vidal AM, Kimbrough RC 3rd. Salmonella enteritidis brain abscess: case report and review. Clin Neurol Neurosurg. 2000;102(4):236–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Pierre-Jerome C, Bekkelund SI, Mellgren SI, Nordstrom R. Bilateral fast magnetic resonance imaging of the operated carpal tunnel. Scand J Plast Reconstr Surg Hand Surg. 1997;31(2):171–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Roh YH, Chung MS, Baek GH, Lee YH, Rhee SH, Gong HS. Incidence of clinically diagnosed and surgically treated carpal tunnel syndrome in Korea. J Hand Surg Am. 2010;35(9):1410–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Song CH, Gong HS, Bae KJ, Kim JH, Nam KP, Baek GH. Evaluation of female hormone-related symptoms in women undergoing carpal tunnel release. J Hand Surg Eur Vol. 2014;39(2):155–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Stevens JC, Beard CM, O’Fallon WM, Kurland LT. Conditions associated with carpal tunnel syndrome. Mayo Clin Proc. 1992;67(6):541–8.Google Scholar
  49. 49.
    Ferry S, Hannaford P, Warskyj M, Lewis M, Croft P. Carpal tunnel syndrome: a nested case-control study of risk factors in women. Am J Epidemiol. 2000;151(6):566–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Pascual E, Giner V, Arostegui A, Conill J, Ruiz MT, Pico A. Higher incidence of carpal tunnel syndrome in oophorectomized women. Br J Rheumatol. 1991;30(1):60–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Geoghegan JM, Clark DI, Bainbridge LC, Smith C, Hubbard R. Risk factors in carpal tunnel syndrome. J Hand Surg Br. 2004;29(4):315–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Sestak I, Sapunar F, Cuzick J. Aromatase inhibitor-induced carpal tunnel syndrome: results from the ATAC trial. J Clin Oncol. 2009;27(30):4961–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Toesca A, Pagnotta A, Zumbo A, Sadun R. Estrogen and progesterone receptors in carpal tunnel syndrome. Cell Biol Int. 2008;32(1):75–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim JK, Hann HJ, Kim MJ, Kim JS. The expression of estrogen receptors in the tenosynovium of postmenopausal women with idiopathic carpal tunnel syndrome. J Orthop Res. 2010;28(11):1469–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA. Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop Relat Res. 2001;383:268–81.CrossRefGoogle Scholar
  56. 56.
    Yoshii Y, Villarraga HR, Henderson J, Zhao C, An KN, Amadio PC. Speckle tracking ultrasound for assessment of the relative motion of flexor tendon and subsynovial connective tissue in the human carpal tunnel. Ultrasound Med Biol. 2009;35(12):1973–81.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Farmer JE, Davis TR. Carpal tunnel syndrome: a case-control study evaluating its relationship with body mass index and hand and wrist measurements. J Hand Surg Eur Vol. 2008;33(4):445–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Chiotis K, Dimisianos N, Rigopoulou A, Chrysanthopoulou A, Chroni E. Role of anthropometric characteristics in idiopathic carpal tunnel syndrome. Arch Phys Med Rehabil. 2013;94(4):737–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Cobb TK, Bond JR, Cooney WP, Metcalf BJ. Assessment of the ratio of carpal contents to carpal tunnel volume in patients with carpal tunnel syndrome: a preliminary report. J Hand Surg Am. 1997;22(4):635–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Sassi SA, Giddins G. Gender differences in carpal tunnel relative cross-sectional area: a possible causative factor in idiopathic carpal tunnel syndrome. J Hand Surg Eur Vol. 2016;41(6):638–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Burger M, de Wet H, Collins M. Interleukin and growth factor gene variants and risk of carpal tunnel syndrome. Gene. 2015;564(1):57–72.CrossRefGoogle Scholar
  62. 62.
    Eroglu P, Erkol Inal E, Sag SO, Gorukmez O, Topak A, Yakut T. Associations analysis of GSTM1, T1 and P1 Ile105Val polymorphisms with carpal tunnel syndrome. Clin Rheumatol. 2016;35(5):1245–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Lozano-Calderon S, Anthony S, Ring D. The quality and strength of evidence for etiology: example of carpal tunnel syndrome. J Hand Surg Am. 2008;33(4):525–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Lluch AL. Thickening of the synovium of the digital flexor tendons: cause or consequence of the carpal tunnel syndrome? J Hand Surg Br. 1992;17(2):209–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Shafer-Crane GA, Meyer RA, Schlinger MC, Bennett DL, Robinson KK, Rechtien JJ. Effect of occupational keyboard typing on magnetic resonance imaging of the median nerve in subjects with and without symptoms of carpal tunnel syndrome. Am J Phys Med Rehabil. 2005;84(4):258–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Burger MC, De Wet H, Collins M. The BGN and ACAN genes and carpal tunnel syndrome. Gene. 2014;551(2):160–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Dada S, Burger MC, Massij F, de Wet H, Collins M. Carpal tunnel syndrome: the role of collagen gene variants. Gene. 2016;587(1):53–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Mio F, Chiba K, Hirose Y, Kawaguchi Y, Mikami Y, Oya T, et al. A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am J Hum Genet. 2007;81(6):1271–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hay M, Patricios J, Collins R, Branfield A, Cook J, Handley CJ, et al. Association of type XI collagen genes with chronic Achilles tendinopathy in independent populations from South Africa and Australia. Br J Sports Med. 2013;47(9):569–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Fishman DA, Kearns A, Chilukuri K, Bafetti LM, O’Toole EA, Georgacopoulos J, et al. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion Metastasis. 1998;18(1):15–26.Google Scholar
  71. 71.
    Casado JL, Arenas C, Segura D, Chinchon I, Gonzalez R, Bautista J. Congenital myopathy with cores and nemaline rods in one family. Neurologia. 1995;10(3):145–8.PubMedGoogle Scholar
  72. 72.
    Danta G. Familial carpal tunnel syndrome with onset in childhood. J Neurol Neurosurg Psychiatry. 1975;38(4):350–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Iannicelli E, Chianta GA, Salvini V, Almberger M, Monacelli G, Passariello R. Evaluation of bifid median nerve with sonography and MR imaging. J Ultrasound Med. 2000;19(7):481–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Ihara Y, Nobukuni K, Namba R, Kamisaka K, Kibata M, Kajinami K, et al. A family of familial hypercholesterolemia with cerebral infarction and without coronary heart disease. An unusual case with corneal opacity, polyneuropathy and carpal tunnel syndrome in the family: therapy with probucol and tocopherol nicotinate. J Neurol Sci. 1991;106(1):10–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Michaud LJ, Hays RM, Dudgeon BJ, Kropp RJ. Congenital carpal tunnel syndrome: case report of autosomal dominant inheritance and review of the literature. Arch Phys Med Rehabil. 1990;71(6):430–2.PubMedGoogle Scholar
  76. 76.
    Murakami T, Tachibana S, Endo Y, Kawai R, Hara M, Tanase S, et al. Familial carpal tunnel syndrome due to amyloidogenic transthyretin His 114 variant. Neurology. 1994;44(2):315–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Uemichi T, Gertz MA, Benson MD. A new transthyretin variant (Ser 24) associated with familial amyloid polyneuropathy. J Med Genet. 1995;32(4):279–81.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Alford JW, Weiss AP, Akelman E. The familial incidence of carpal tunnel syndrome in patients with unilateral and bilateral disease. Am J Orthop (Belle Mead NJ). 2004;33(8):397–400.Google Scholar
  79. 79.
    Tanzer RC. The carpal-tunnel syndrome; a clinical and anatomical study. J Bone Joint Surg Am. 1959;41-A(4):626–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Radecki P. The familial occurrence of carpal tunnel syndrome. Muscle Nerve. 1994;17(3):325–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Becker J, Nora DB, Gomes I, Stringari FF, Seitensus R, Panosso JS, et al. An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome. Clin Neurophysiol. 2002;113(9):1429–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Dieck GS, Kelsey JL. An epidemiologic study of the carpal tunnel syndrome in an adult female population. Prev Med. 1985;14(1):63–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Werner RA, Albers JW, Franzblau A, Armstrong TJ. The relationship between body mass index and the diagnosis of carpal tunnel syndrome. Muscle Nerve. 1994;17(6):632–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Stallings S, Kasdan M, Soergel T, Corwin H. A case-control study of obesity as a risk factor for carpal tunnel syndrome in a population of 600 patientspresenting for independent medical examination. J Hand Surg. 1997;22(2):211–5.CrossRefGoogle Scholar
  85. 85.
    Kouyoumdijian JA, Morita MD, Rocha PR, Miranda RC, Gouveia GM. Body mass index and carpal tunnel syndrome. Arq Neuropsiquiatr. 2000;58(2A):252–6.CrossRefGoogle Scholar
  86. 86.
    Nathan PA, Keniston RC, Myers LD, Meadows KD. Obesity as a risk factor for slowing of sensory conduction of the median nerve in industry. A cross-sectional and longitudinal study involving 429 workers. J Occup Med. 1992;34(4):379–83.PubMedGoogle Scholar
  87. 87.
    Radecki P. Variability in the median and ulnar nerve latencies: implications for diagnosing entrapment. J Occup Environ Med. 1995;37(11):1293–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Bland JD. Carpal tunnel syndrome. BMJ. 2007;335(7615):343–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Shiri R, Pourmemari MH, Falah-Hassani K, Viikari-Juntura E. The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies. Obes Rev. 2015;16(12):1094–104.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh R, Gamble G, Cundy T. Lifetime risk of symptomatic carpal tunnel syndrome in type 1 diabetes. Diabet Med. 2005;22(5):625–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Rosenbloom AL, Silverstein JH. Connective tissue and joint disease in diabetes mellitus. Endocrinol Metab Clin N Am. 1996;25(2):473–83.CrossRefGoogle Scholar
  92. 92.
    Keniston RC, Nathan PA, Leklem JE, Lockwood RS. Vitamin B6, vitamin C, and carpal tunnel syndrome. A cross-sectional study of 441 adults. J Occup Environ Med. 1997;39(10):949–59.PubMedCrossRefGoogle Scholar
  93. 93.
    Cagliero E, Apruzzese W, Perlmutter GS, Nathan DM. Musculoskeletal disorders of the hand and shoulder in patients with diabetes mellitus. Am J Med. 2002;112(6):487–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Comi G, Lozza L, Galardi G, Ghilardi MF, Medaglini S, Canal N. Presence of carpal tunnel syndrome in diabetics: effect of age, sex, diabetes duration and polyneuropathy. Acta Diabetol Lat. 1985;22(3):259–62.PubMedCrossRefGoogle Scholar
  95. 95.
    Dellon AL, Mackinnon SE, Seiler WA 4th. Susceptibility of the diabetic nerve to chronic compression. Ann Plast Surg. 1988;20(2):117–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Solomon DH, Katz JN, Bohn R, Mogun H, Avorn J. Nonoccupational risk factors for carpal tunnel syndrome. J Gen Intern Med. 1999;14(5):310–4.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nemni R, Bottacchi E, Fazio R, Mamoli A, Corbo M, Camerlingo M, et al. Polyneuropathy in hypothyroidism: clinical, electrophysiological and morphological findings in four cases. J Neurol Neurosurg Psychiatry. 1987;50(11):1454–60.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Karne SS, Bhalerao NS. Carpal tunnel syndrome in hypothyroidism. J Clin Diagn Res. 2016;10(2):OC36–8.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Kasem A, Fathy S, Shanin D, Finky A. Carpal tunnel syndrome in hypothyroid patients: the effect of hormone replacement therapy. Am J Intern Med. 2014;2(3):54–8.Google Scholar
  100. 100.
    Baum H, Ludecke DK, Herrmann HD. Carpal tunnel syndrome and acromegaly. Acta Neurochir. 1986;83(1–2):54–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Kameyama S, Tanaka R, Hasegawa A, Tamura T, Kuroki M. Subclinical carpal tunnel syndrome in acromegaly. Neurol Med Chir (Tokyo). 1993;33(8):547–51.CrossRefGoogle Scholar
  102. 102.
    Gondring WH. The carpal tunnel syndrome and acromegaly. J Okla State Med Assoc. 1966;59(6):274–9.PubMedGoogle Scholar
  103. 103.
    Luboshitzky R, Barzilai D. Bromocriptine for an acromegalic patient. Improvement in cardiac function and carpal tunnel syndrome. JAMA. 1980;244(16):1825–7.PubMedCrossRefGoogle Scholar
  104. 104.
    O’Duffy JD, Randall RV, MacCarty CS. Median neuropathy (carpal-tunnel syndrome) in acromegaly. A sign of endocrine overactivity. Ann Intern Med. 1973;78(3):379–83.Google Scholar
  105. 105.
    Verma AK, Mahapatra AK. Pre and postoperative median nerve conduction in patients with pituitary tumour. J Indian Med Assoc. 1994;92(7):225–8.PubMedGoogle Scholar
  106. 106.
    Johnston AW. Acroparaesthesiae and acromegaly. Br Med J. 1960;1(5186):1616–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Schiller F, Kolb FO. Carpal tunnel syndrome in acromegaly. Neurology. 1954;4(4):271–82.PubMedCrossRefGoogle Scholar
  108. 108.
    Dinn JJ. Schwann cell dysfunction in acromegaly. J Clin Endocrinol Metab. 1970;31(2):140–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Jenkins PJ, Sohaib SA, Akker S, Phillips RR, Spillane K, Wass JA, et al. The pathology of median neuropathy in acromegaly. Ann Intern Med. 2000;133(3):197–201.PubMedCrossRefGoogle Scholar
  110. 110.
    Goodwill CJ. The carpal tunnel syndrome. Long-term follow-up showing relation of latency measurements to response to treatment. Ann Phys Med. 1965;8:12–21.PubMedGoogle Scholar
  111. 111.
    Kwon HK, Pyun SB, Cho WY, Boo CS. Carpal tunnel syndrome and peripheral polyneuropathy in patients with end stage kidney disease. J Korean Med Sci. 2011;26(9):1227–30.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Muramatsu K, Tanaka H, Taguchi T. Peripheral neuropathies of the forearm and hand in rheumatoid arthritis: diagnosis and options for treatment. Rheumatol Int. 2008;28(10):951–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Filippucci E, Gabba A, Di Geso L, Girolimetti R, Salaffi F, Grassi W. Hand tendon involvement in rheumatoid arthritis: an ultrasound study. Semin Arthritis Rheum. 2012;41(6):752–60.PubMedCrossRefGoogle Scholar
  114. 114.
    Lee KH, Lee CH, Lee BG, Park JS, Choi WS. The incidence of carpal tunnel syndrome in patients with rheumatoid arthritis. Int J Rheum Dis. 2015;18(1):52–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Scott F. M. Duncan
    • 1
    Email author
  • Oam Bhate
    • 2
  • Hatim Mustaly
    • 2
  1. 1.Department of Orthopedic SurgeryBoston University/Boston Medical CenterBostonUSA
  2. 2.Boston University School of MedicineBostonUSA

Personalised recommendations