Safety Services in Smart Environments Using Depth Cameras

  • Matthias Ruben Mettel
  • Michael Alekseew
  • Carsten Stocklöw
  • Andreas Braun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10217)


Falls of elderly persons are the most common cause of serious injuries in this age group. It is important to detect the fall in a timely manner. If medical help can’t be provided immediately a deterioration of the patient’s state may occur. In order to tackle this challenge, we want to propose two combined safety services that can utilize the same sensor to prevent and detect falls. The Dangerous Object Adviser detects small obstacles located on the floor and warns the user about the stumbling hazard when the user walks in their direction. The Fall Detection Service detects a fall and informs caregivers. This enables the caregivers to provide medical care in time. Both services are implemented by using the Microsoft Kinect, with the obstacles extracted from the depth image and the usage of skeleton tracking gives to provide the necessary information on the user position and pose.


Safety services Smart environments Fall detection Microsoft Kinect 


  1. 1.
    Su, B.Y., Ho, K.C., Rantz, M.J., Skubic, M.: Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 62(3), 865–875 (2015)CrossRefGoogle Scholar
  2. 2.
    Prediger, M., Braun, A., Marinc, A., Kuijper, A.: Robot-supported pointing interaction for intelligent environments. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2014. LNCS, vol. 8530, pp. 172–183. Springer, Cham (2014). doi: 10.1007/978-3-319-07788-8_17 CrossRefGoogle Scholar
  3. 3.
    Kepski, M., Kwolek, B.: Human fall detection using kinect sensor. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 743–752. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-00969-8_73 CrossRefGoogle Scholar
  4. 4.
    Hanke, S., Sandner, E., Stainer-Hochgatterer, A., Tsiourti, C., Braun, A.: The technical specification and architecture of a virtual support partner. In: AmI (Workshops/Posters) (2015)Google Scholar
  5. 5.
    Chen, J., Kwong, K., Chang, D., Luk, J., Bajcsy, R.: Wearable sensors for reliable fall detection. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 3551–3554, January 2005Google Scholar
  6. 6.
    Kawatsu, C., Li, J., Chung, C.J.: Development of a fall detection system with microsoft kinect. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P. (eds.) Robot Intelligence Technology and Applications 2012. AISC, vol. 208, pp. 623–630. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37374-9_59 CrossRefGoogle Scholar
  7. 7.
    Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A smart and passive floor-vibration based fall detector for elderly. In: 2006 2nd International Conference on Information Communication Technologies, vol. 1, pp. 1003–1007 (2006)Google Scholar
  8. 8.
    Braun, A., Heggen, H., Wichert, R.: CapFloor – a flexible capacitive indoor localization system. In: Chessa, S., Knauth, S. (eds.) EvAAL 2011. CCIS, vol. 309, pp. 26–35. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33533-4_3 CrossRefGoogle Scholar
  9. 9.
    Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. 7(4), 483–510 (2015)CrossRefGoogle Scholar
  10. 10.
    Kirchbuchner, F., Grosse-Puppendahl, T., Hastall, M.R., Distler, M., Kuijper, A.: Ambient intelligence from senior citizens’ perspectives: understanding privacy concerns, technology acceptance, and expectations. In: Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 48–59. Springer, Cham (2015). doi: 10.1007/978-3-319-26005-1_4 CrossRefGoogle Scholar
  11. 11.
    Rougier, C., Meunier, J.: Demo: fall detection using 3D head trajectory extracted from a single camera video sequence. J. Telemedicine Telecare 11(4), 37–42 (2005)Google Scholar
  12. 12.
    Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a kinect\(\textregistered \) sensor. Sensors 14(2), 2756 (2014)CrossRefGoogle Scholar
  13. 13.
    Hamm, J., Money, A.G., Atwal, A., Paraskevopoulos, I.: Fall prevention intervention technologies: a conceptual framework and survey of the state of the art. J. Biomed. Inform. 59, 319–345 (2016)CrossRefGoogle Scholar
  14. 14.
    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4(4), 333–349 (1997)CrossRefGoogle Scholar
  15. 15.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Rob. Res. 31(5), 647–663 (2012)CrossRefGoogle Scholar
  16. 16.
    Microsoft Corporation: Kinect for windows SDK - kinect fusion, May 2016Google Scholar
  17. 17.
    Dissanayake, M.W.M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (slam) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)CrossRefGoogle Scholar
  18. 18.
    Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)CrossRefGoogle Scholar
  19. 19.
    Fryar, C.D., Qiuping, G., Ogden, C.L.: Anthropometric reference data for children and adults: United States, 2007–2010. Vital and Health Stat. Ser. 11, Data Natl. Health Surv. 252, 1–48 (2012)Google Scholar
  20. 20.
    Microsoft Corporation: Kinect for windows SDK v1.8 - skeletal tracking, May 2016Google Scholar
  21. 21.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011Google Scholar
  22. 22.
    Microsoft Corporation: Kinect for windows SDK - kinect API overview, May 2016Google Scholar
  23. 23.
    Microsoft Corporation: Kinect for windows SDK - features, May 2016Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany

Personalised recommendations