An Exploratory Study on Electric Field Sensing

  • Julian von Wilmsdorff
  • Florian Kirchbuchner
  • Biying Fu
  • Andreas Braun
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10217)

Abstract

Electric fields are influenced by the human body and other conducting materials. Capacitive measurement techniques are used in touch-screens, in the automobile industry, and for presence and activity recognition in Ubiquitous Computing. However, a drawback of the capacitive technology is the energy consumption, which is an important aspect for mobile devices. In this paper we explore possible applications of electric field sensing, a purely passive capacitive measurement technique, which can be implemented with an extremely low power consumption. To cover a wide range of applications, we examine five possible use cases in more detail. The results show that the application is feasible both in interior spaces and outdoors. Moreover, due to the low energy consumption, mobile usage is also possible.

Keywords

Electric field sensing Capacitive sensing Motion detection Sensors Gesture recognition 

References

  1. 1.
    Braun, A., Dutz, T., Kamieth, F.: Capacitive sensor-based hand gesture recognition in ambient intelligence scenarios. In: Proceedings of the 6th International Conference on Pervasive Technologies Related to Assistive Environments, PETRA 2013, pp. 5:1–5:4. ACM, New York (2013). http://dx.doi.org/10.1145/2504335.2504340
  2. 2.
    Clippingdale, A.J.: The sensing of spatial electrical potential. Ph.D. thesis, University of Sussex (1993)Google Scholar
  3. 3.
    Cohn, G., Gupta, S., Lee, T.J., Morris, D., Smith, J.R., Reynolds, M.S., Tan, D.S., Patel, S.N.: An ultra-low-power human body motion sensor using static electric field sensing. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 99–102. ACM, New York (2012). http://dx.doi.org/10.1145/2370216.2370233
  4. 4.
    Cohn, G., Morris, D., Patel, S.N., Tan, D.S.: Your noise is my command: sensing gestures using the body as an antenna. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 791–800. ACM, New York (2011). http://dx.doi.org/10.1145/1978942.1979058
  5. 5.
    Gebrial, W., Prance, R., Harland, C., Clark, T.: Noninvasive imaging using an array of electric potential sensors. Rev. Sci. Instrum. 77(6), 063708 (2006). http://dx.doi.org/10.1063/1.2213219 CrossRefGoogle Scholar
  6. 6.
    Grosse-Puppendahl, T., Dellangnol, X., Hatzfeld, C., Fu, B., Kupnik, M., Kuijper, A., Hastall, M., Scott, J., Gruteser, M.: Platypus - indoor localization and identification through sensing electric potential changes in human bodies. In: 14th ACM International Conference on Mobile Systems, Applications and Services (MobiSys). ACM (2016). http://dx.doi.org/10.1145/2906388.2906402
  7. 7.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: Opencapsense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 152–159. IEEE (2013). http://dx.doi.org/10.1109/PerCom.2013.6526726
  8. 8.
    Harland, C., Clark, T., Prance, R.: Electric potential probes-new directions in the remote sensing of the human body. Measur. Sci. Technol. 13(2), 163 (2001)CrossRefGoogle Scholar
  9. 9.
    Kaila, L., Raula, H., Valtonen, M., Palovuori, K.: Living wood: a self-hiding calm user interface. In: Proceeding of the 16th International Academic MindTrek Conference, MindTrek 2012, pp. 267–274. ACM, New York (2012). http://dx.doi.org/10.1145/2393132.2393191
  10. 10.
    Mujibiya, A., Rekimoto, J.: Mirage: exploring interaction modalities using off-body static electric field sensing. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST 2013, pp. 211–220. ACM, New York (2013). http://dx.doi.org/10.1145/2501988.2502031
  11. 11.
    Poupyrev, I., Schoessler, P., Loh, J., Sato, M.: Botanicus interacticus: interactive plants technology. In: ACM SIGGRAPH 2012 Emerging Technologies, p. 4. ACM (2012). http://dx.doi.org/10.1145/2343456.2343460
  12. 12.
    Pouryazdan, A., Prance, R., Prance, H., Roggen, D.: Wearable electric potential sensing: a new modality sensing hair touch and restless leg movement. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 846–850. ACM (2016). dx.doi.org/10.1145/2968219.2968286
  13. 13.
    Prance, R., Beardsmore-Rust, S., Watson, P., Harland, C., Prance, H.: Remote detection of human electrophysiological signals using electric potential sensors. Appl. Phys. Lett. 93(3), 033906 (2008). http://dx.doi.org/10.1063/1.2964185 CrossRefGoogle Scholar
  14. 14.
    Sato, M., Poupyrev, I., Harrison, C.: Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 483–492. ACM (2012). http://dx.doi.org/10.1145/2207676.2207743

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations