E-Textile Couch: Towards Smart Garments Integrated Furniture

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10217)

Abstract

Application areas like health-care and smart environments have greatly benefited from embedding sensors into every-day-objects, enabling for example sleep apnea detection. We propose to further integrate parts of sensors into the very own materials of the objects. Thus, in this work we explore integrating smart garments into furniture using a couch as our use-case. Equipped with textile capacitive sensing electrodes, we show that our prototype outperforms existing systems achieving an F-measure of 94.1%. Furthermore, we discuss implications and limitation of the integration process.

Keywords

Capacitive sensing Conductive materials E-textiles Posture detection 

References

  1. 1.
    Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., Häkkilä, J.: Evaluating capacitive touch input on clothes. In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI 2008, pp. 81–90. ACM, New York (2008)Google Scholar
  2. 2.
    Seymour, S.: Fashionable Technology: The Intersection of Design, Fashion, Science, and Technology, 1st edn. Springer Publishing Company, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Schneegass, S., Voit, A,: GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers, ISWC 2016, pp. 108–115. ACM, New York (2016)Google Scholar
  4. 4.
    Hamdan, N.A.-H., Blum, J.R., Heller, F., Kosuru, R.K., Borchers, J.: Grabbing at an angle: menu selection for fabric interfaces. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers, ISWC 2016, pp. 1–7. ACM, New York (2016)Google Scholar
  5. 5.
    Singh, G., Nelson, A., Robucci, R., Patel, C., Banerjee, N.: Inviz: low-power personalized gesture recognition using wearable textile capacitive sensor arrays. In: 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 198–206, March 2015Google Scholar
  6. 6.
    Wang, Q., Toeters, M., Chen, W., Timmermans, A., Markopoulos, P.: Zishi: A smart garment for posture monitoring. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2016, pp. 3792–3795. ACM, New York (2016)Google Scholar
  7. 7.
    Zhou, B., Sundholm, M., Cheng, J., Cruz, H., Lukowicz, P.: Never skip leg day: A novel wearable approach to monitoring gym leg exercises. In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–9, March 2016Google Scholar
  8. 8.
    Dementyev, A.: Towards self-aware materials. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2016, pp. 685–688. ACM, New York (2016)Google Scholar
  9. 9.
    Poupyrev, I., Gong, N.-W., Fukuhara, S., Emre Karagozler, M., Schwesig, C., Robinson, K. E.: Project Jacquard: interactive digital textiles at scale. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 4216–4227. ACM, New York (2016)Google Scholar
  10. 10.
    Mennicken, S., Bernheim Brush, A.J., Roseway, A., Scott, J.: Finding roles for interactive furniture in homes with Emotocouch. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 2014 Adjunct, pp. 923–930. ACM, New York (2014)Google Scholar
  11. 11.
    Mennicken, S., Bernheim Brush, A.J., Roseway, A., Scott, J.: Exploring interactive furniture with EmotoCouch. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 2014 Adjunct, pp. 307–310. ACM, New York (2014)Google Scholar
  12. 12.
    Rus, S., Sahbaz, M., Braun, A., Kuijper, A.: Design factors for flexible capacitive sensors in ambient intelligence. In: Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 77–92. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26005-1_6 CrossRefGoogle Scholar
  13. 13.
    Xu, X., Lin, F., Wang, A., Hu, Y., Huang, M.C., Xu, W.: Body-earth mover’s distance: a matching-based approach for sleep posture recognition. IEEE Trans. Biomed. Circ. Syst. 10(5), 1023–1035 (2016)CrossRefGoogle Scholar
  14. 14.
    Enokibori, Y., Ito, Y., Suzuki, A., Mizuno, H., Shimakami, Y., Kawabe, T., Mase,K.: Spirovest: An E-textile-based wearable spirometer with posture change adaptability. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp 2013 Adjunct, pp. 203–206. ACM, New York (2013)Google Scholar
  15. 15.
    Braun, A., Frank, S., Wichert, R.: The capacitive chair. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2015. LNCS, vol. 9189, pp. 397–407. Springer, Cham (2015). doi: 10.1007/978-3-319-20804-6_36 CrossRefGoogle Scholar
  16. 16.
    Chang, W.-Y., Chen, C.-C., Chang, C.-C., Yang, C.-L.: An enhanced sensing application based on a flexible projected capacitive-sensing mattress. Sensors 14(4), 6922–6937 (2014)CrossRefGoogle Scholar
  17. 17.
    Djakow, M., Braun, A., Marinc, A.: MoviBed - sleep analysis using capacitive sensors. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014. LNCS, vol. 8516, pp. 171–181. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07509-9_17 CrossRefGoogle Scholar
  18. 18.
    Rus, S., Grosse-Puppendahl, T., Kuijper, A.: Recognition of bed postures using mutual capacitance sensing. In: Aarts, E., et al. (eds.) AmI 2014. LNCS, vol. 8850, pp. 51–66. Springer, Cham (2014)Google Scholar
  19. 19.
    Liu, J.J., Xu, W., Huang, M.-C., Alshurafa, N., Sarrafzadeh, M., Raut, N., Yadegar, B.: A dense pressure sensitive bedsheet design for unobtrusive sleep posture monitoring. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), p. 22 (2013)Google Scholar
  20. 20.
    Tan, H.Z., Slivovsky, L.A., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatron. 6(3), 261–268 (2001)CrossRefGoogle Scholar
  21. 21.
    Shirehjini, A.A.N., Yassine, A., Shirmohammadi, S.: Design and implementation of a system for body posture recognition. Multimedia Tools Appl. 70(3), 1637–1650 (2014)CrossRefGoogle Scholar
  22. 22.
    Braun, A., Schembri, I., Frank, S.: ExerSeat - sensor-supported exercise system for Ergonomic microbreaks. In: Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 236–251. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26005-1_16 CrossRefGoogle Scholar
  23. 23.
    Braun, A., Frank, S., Majewski, M., Wang, X.: Capseat: capacitive proximity sensing for automotive activity recognition. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2015, pp. 225–232. ACM, New York (2015)Google Scholar
  24. 24.
    Kivikunnas, S., Strmmer, E., Korkalainen, M., Heikkil, T., Haverinen, M.: Sensing sofa and its ubiquitous use. In: 2010 International Conference on Information and Communication Technology Convergence (ICTC), pp. 559–562, November 2010Google Scholar
  25. 25.
    Große-Puppendahl, T.A., Marinc, A., Braun, A.: Classification of user postures with capacitive proximity sensors in AAL-environments. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25167-2_43 CrossRefGoogle Scholar
  26. 26.
    Heikkil, T., Strmmer, E., Kivikunnas, S., Jrviluoma, M., Korkalainen, M., Kyllnen, V., Sarjanoja, E.M., Peltomaa, I.: Low intrusive Ehealth monitoring: human posture and activity level detection with an intelligent furniture network. IEEE Wirel. Commun. 20(4), 57–63 (2013)CrossRefGoogle Scholar
  27. 27.
    Pohl, H., Hettig, M., Karras, O., Ötztürk, H., Rohs, M.: CapCouch: home control with a posture-sensing couch. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC2015 Adjunct, pp. 229–232. ACM, New York (2015)Google Scholar
  28. 28.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 152–159, March 2013Google Scholar
  29. 29.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  30. 30.
    Tsuruta, M., Nakamae, S., Shizuki, B.: RootCap: touch detection on multi-electrodes using single-line connected capacitive sensing. In: Proceedings of the 2016 ACM on Interactive Surfaces and Spaces, ISS 2016, pp. 23–32. ACM, New York (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations