Advertisement

Suitability of IEEE 802.11ac/n/p for Bandwidth Hungry and Infotainment Applications for Cities

  • Kishwer Abdul Khaliq
  • Muhammad Sajjad Akbar
  • Amir Qayyum
  • Jürgen Pannek
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 15)

Abstract

The Intelligent Transportation System (ITS) addresses issues regarding road safety and efficiency in the domain of Vehicular Ad hoc Networks (VANETs). In the last few years, research in ITS has been focused on delay sensitive and bandwidth hungry applications, which demand time bounded and high throughput services. In this paper, we analyzed 802.11ac, n and p with regard to their suitability in different VANET scenarios, specifically where applications require reliability and high data rate. We simulated these standards by considering different urban scenarios and varying different parameters such as speed, nodes, traffic loads, and bit error rate etc. We observed that 802.11n and 802.11ac performed comparatively well in most of the scenarios due to their enhanced MAC layer mechanisms. Frame aggregation with block acknowledgement significantly increases the bandwidth and reduces the delay. IEEE 802.11p, on other hand, allows transmission range of 1000 m, which is five times larger than for 802.11n or 802.11ac.

Keywords

VANET Aggregation Block acknowledgment Reverse direction IEEE 802.11ac IEEE802.11n IEEE802.11p 

Notes

Acknowledgment

This research was supported by the European Commission in the framework of Erasmus Mundus and within the project cLINK.

References

  1. 1.
    Mohammad, S.A., Rasheed, A., Qayyum, A.: VANET architectures and protocol stacks: a survey. In: Communication Technologies for Vehicles, pp. 95–105 (2011)Google Scholar
  2. 2.
    Liu, B., Khorashadi, B., Du, H., Ghosal, D., Chuah, C.-N., Zhang, M.: VGSim: an integrated networking and microscopic vehicular mobility simulation platform. IEEE Commun. Mag. 47(5), 134–141 (2009)CrossRefGoogle Scholar
  3. 3.
    Murray, T., Cojocari, M., Fu, H.: Measuring the performance of IEEE 802.11p using ns-2 simulator for vehicular networks. In: IEEE International Conference on Electro/Information Technology, pp. 498–503 (2008)Google Scholar
  4. 4.
    Wang, C.-Y., Wei, H.-Y.: IEEE 802.11n MAC enhancement and performance evaluation. Mob. Netw. Appl. 14(6), 760–771 (2009). SpringerCrossRefGoogle Scholar
  5. 5.
    Akbar, M.S., Khan, M.S., Khaliq, K.A., Qayyum, A., Yousaf, M.: Evaluation of IEEE 802.11n for multimedia application in VANET. Proc. Comput. Sci. 32, 953–958 (2014)CrossRefGoogle Scholar
  6. 6.
    Bellalta, B., Barcelo, J., Staehle, D., Vinel, A., Oliver, M.: On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs. IEEE Commun. Lett. 16, 1588–1591 (2012)CrossRefGoogle Scholar
  7. 7.
    Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11n and 802.11ac. Cambridge University Press, New York (2013)CrossRefGoogle Scholar
  8. 8.
    Katrin, B., Uhlemann, E., Store, E., Bilstrup, U.: On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP J. Wirel. Commun. Netw. 2009(5), 1–13 (2008)Google Scholar
  9. 9.
    Khaliq, K.A., Pannek, J., Qayyum, A.: Methodology for development of logistics information and safety system using VANET. In: Proceedings of the 5th International Conference on Dynamics in Logistics LDIC. Lecture Notes on Logistics, pp. 173–182. Springer (2016)Google Scholar
  10. 10.
    Siddiqui, N.R., Khaliq, K.A., Pannek, J.: VANET security analysis on the basis of attacks in authentication. In: Proceedings of the 5th International Conference on Dynamics in Logistics. Lecture Notes on Logistics, pp. 463–473. Springer (2016)Google Scholar
  11. 11.
    Ong, E.H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., Nihtilä, T.: IEEE 802.11ac: enhancements for very high throughput WLANs. In: IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 849–853 (2011)Google Scholar
  12. 12.
    Morgan, Y.L.: Notes on DSRC & WAVE standards suite: its architecture, design, and characteristics. IEEE Commun. Surv. Tutorials 12(4), 504–518 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Ahmed, A., Krishnamachari, B., Psounis, K.: IEEE 802.11p performance evaluation and protocol enhancement. In: ICVES 2008 IEEE International Conference on Vehicular Electronics and Safety, pp. 317–322 (2008)Google Scholar
  14. 14.
    Bilstrup, K., Uhlemann, E., Strom, E.G., Bilstrup, U.: Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In: IEEE 68th Vehicular Technology Conference, pp. 1–5 (2008)Google Scholar
  15. 15.
    Dressler, F., Kargl, F., Ott, J., Tonguz, O.K., Wischhof, L.: Research challenges in intervehicular communication lessons of the 2010 dagstuhl seminar. IEEE Commun. Mag. 49(5), 158–164 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Zhang, Y., Jiang, H., Liu, J., Wu, J.: An integrated propagation model for VANET in urban scenario. In: Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, pp. 6–10 (2010)Google Scholar
  17. 17.
    Amadeo, M., Campolo, C., Molinaro, A.: Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs. Ad Hoc Netw. 10(2), 253–269 (2012)CrossRefGoogle Scholar
  18. 18.
    Sheu, S.-T., Cheng, Y.-C., Hsieh, P.-J., Wu, J.-S.: Agent-based scheduling scheme for IEEE 802.11p wireless vehicular networks. In: IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2011)Google Scholar
  19. 19.
    Gunter, Y., Wiegel, B., Grossmann, H.P.: Cluster-based medium access scheme for VANETs. In: IEEE Intelligent Transportation Systems Conference(ITSC 2007), pp. 343–348 (2007)Google Scholar
  20. 20.
    Blum, J.J., Eskandarian, A.: A reliable link-layer protocol for robust and scalable intervehicle communications. IEEE Trans. Intell. Transp. Syst. 8(1), 4–13 (2007)CrossRefGoogle Scholar
  21. 21.
    Yu, F., Biswas, S.: Self-configuring TDMA protocols for enhancing vehicle safety with DSRC based vehicle-to-vehicle communications. IEEE J. Sel. Areas Commun. 25(8), 1526–1537 (2007)CrossRefGoogle Scholar
  22. 22.
    Akbar, M.S., Khaliq, K.A., Qayyum, A.: Vehicular MAC protocol data unit (V-MPDU): IEEE 802.11p MAC protocol extension to support bandwidth hungry applications. In: Vehicular Ad-hoc Networks for Smart Cities, pp. 31–39. Springer (2015)Google Scholar
  23. 23.
    Akbar, M.S., Qayyum, A., Khaliq, K.A.: Information delivery improvement for safety applications in VANET by minimizing Rayleigh and Rician fading effect. In: Vehicular Ad-hoc Networks for Smart Cities, pp. 85–92. Springer (2015)Google Scholar
  24. 24.
    García, M.A., Santos, M., Villalón, J.: IEEE 802.11n MAC mechanisms for high throughput: a performance evaluation. In: The Seventh International Conference on Networking and Services ICNS, pp. 32–37 (2011)Google Scholar
  25. 25.
    Skordoulis, D., Ni, Q., Ali, U., Hadjinicolaou, M.: Analysis of concatenation and packing mechanisms in IEEE 802.11n. In: Proceedings of the 6th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting (PGNET 2007) (2007)Google Scholar
  26. 26.
    Skordoulis, D., Ni, Q., Chen, H.-H., Stephens, A.P., Liu, C., Jamalipour, A.: IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wirel. Commun. 15(1), 40–47 (2008)CrossRefGoogle Scholar
  27. 27.
    Choi, S., Del Prado, J., Mangold, S., et al.: IEEE 802.11e contention-based channel access (EDCF) performance evaluation. In: IEEE International Conference on Communications(ICC 2003), vol. 2, pp. 1151–1156 (2003)Google Scholar
  28. 28.
    Xiao, Y.: IEEE 802.11n: enhancements for higher throughput in wireless LANs. IEEE Wirel. Commun. 12(6), 82–91 (2005)CrossRefGoogle Scholar
  29. 29.
    Ginzburg, B., Kesselman, A.: Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n. In: IEEE Sarnoff symposium 2007, pp. 1–5 (2007)Google Scholar
  30. 30.
    Lin, Y., Wong, V.W.: WSN01-1: frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs. In: IEEE Global Telecommunications Conference (GLOBECOM 2006), pp. 1–6 (2006)Google Scholar
  31. 31.
    Park, M.: IEEE 802.11ac: dynamic bandwidth channel access. In: IEEE International Conference on Communications (ICC), pp. 1–5 (2011)Google Scholar
  32. 32.
    Bejarano, O., Knightly, E.W., Park, M.: IEEE 802.11ac: from channelization to multi-user MIMO. IEEE Commun. Mag. 51(10), 84–90 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kishwer Abdul Khaliq
    • 1
  • Muhammad Sajjad Akbar
    • 2
  • Amir Qayyum
    • 3
  • Jürgen Pannek
    • 4
  1. 1.Department of Production EngineeringIGS, University of BremenBremenGermany
  2. 2.Bournemouth UniversityPooleUK
  3. 3.CoReNeT, CUSTIslamabadPakistan
  4. 4.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations