Providing Intelligent Assistance for Product Configuration in Manufacturing: A Learning-to-Rank Approach

  • Carsten Poggemeier
  • Matthias Hartung
  • Philipp Cimiano
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 15)


Configuring complex products can be a challenge due to the huge number of configuration possibilities. In this paper, our goal is to foster the development of intelligent configuration assistants that can support customers in configuring complex products. We formalize the task as a machine learning problem and in particular as a learning-to-rank problem. Given pairwise preferences elicited from experts, we show that we can train a model using support vector machines that ranks possible products according to their relevance to a given set of requirements specified by a user.


Product configuration Ranking Information retrieval 



The second and third author acknowledge funding from the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277), Bielefeld University.


  1. 1.
    Hedin, G., Ohlsson, L., McKenna, J.: Product configuration using object oriented grammars. In: System Configuration Management, pp. 107–126. Springer (1998)Google Scholar
  2. 2.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)Google Scholar
  3. 3.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–48. ACM (2000)Google Scholar
  5. 5.
    Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval. Inf. Retr. 10(3), 257–274 (2007)CrossRefGoogle Scholar
  7. 7.
    Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 391–398. ACM (2007)Google Scholar
  8. 8.
    Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 129–136. ACM (2007)Google Scholar
  9. 9.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Robertson, S., Zaragoza, H.: On rank-based effectiveness measures and optimization. Inf. Retrieval 10(3), 321–339 (2007)CrossRefGoogle Scholar
  11. 11.
    Piwowarski, B., Zaragoza, H.: Predictive user click models based on click-through history. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 175–182. ACM (2007)Google Scholar
  12. 12.
    Karatzoglou, A., Baltrunas, L., Shi, Y.: Learning to rank for recommender systems. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 493–494. ACM (2013)Google Scholar
  13. 13.
    Falkner, A., Felfernig, A., Haag, A.: Recommendation technologies for configurable products. AI Mag. 32(3), 99–108 (2011)CrossRefGoogle Scholar
  14. 14.
    Petit, T., Bessiere, C., Régin, J.-C.: A general conflict-set based framework for partial constraint satisfaction. Algorithms 15, 13 (2003)Google Scholar
  15. 15.
    Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(01), 53–62 (2012)CrossRefGoogle Scholar
  16. 16.
    Tiihonen, J., Felfernig, A.: Towards recommending configurable offerings. Int. J. Mass Cust. 3(4), 389–406 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carsten Poggemeier
    • 1
  • Matthias Hartung
    • 2
  • Philipp Cimiano
    • 2
  1. 1.HARTING IT Services GmbH & Co. KGEspelkampGermany
  2. 2.CITECBielefeld UniversityBielefeldGermany

Personalised recommendations