Advertisement

Intelligent Predictive Maintenance System

  • Mateusz Marzec
  • Paweł MorkiszEmail author
  • Jakub Wojdyła
  • Tadeusz Uhl
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 15)

Abstract

The machine learning techniques can be efficiently used for optimal maintenance decision making. Currently, most of the companies and manufactures possess huge amounts of sensor, process, and environment data. Combining the data with the information about the failures succeeds in creating useful train data sets for predictive maintenance purposes. In this paper, we propose the approach of efficient data processing in order to maximize the predictive quality of machine learning models. We investigate numerous machine-learning methods and propose the procedure to automatize the predictive maintenance process. The results obtained for the real data were satisfactory and applicable.

Keywords

Predictive maintenance Machine learning Optimization Random forest SVM 

References

  1. 1.
    Mobley, R.: An Introduction to Predictive Maintenance, 2nd edn. Butterworth-Heinemann, Oxford (2002)Google Scholar
  2. 2.
    Scheffer, C., Girdhar, P.: Practical Machinery Vibration Analysis and Predictive Maintenance. Elsevier, Amsterdam (2004)Google Scholar
  3. 3.
    Nicholas, J.R., Young, R.K.: Predictive Maintenance Management, 1st edn. Maintenance Quality Systems LLC (2003) Google Scholar
  4. 4.
    Ketchen Jr., D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–459 (1996)CrossRefGoogle Scholar
  5. 5.
    Hassanat A., Abbadi M., Altarawneh G.: Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach. In: IJCSIS, vol 12, No 8 (2014)Google Scholar
  6. 6.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ran S., Cao X., Wei Y., Sun Y.: Global Refinement of Random Forest (CVPR 2015)Google Scholar
  8. 8.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  10. 10.
    Agresti, A.: Categorical Data Analysis, 3rd edn. John Wiley & Sons Inc, New Jersey (2013)zbMATHGoogle Scholar
  11. 11.
    Baker, G.A.: Transformation of non-normal frequency distributions into normal distributions. Ann. Math. Stat. 5, 113–123 (1934)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bartlett, M.S.: The use of transformation. Biom. Bullet. 3, 39–52 (1947)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Box, G.E.P., Cox, D.R.: An analysis of transformations. JR Stat. Soc. B. 26(2), 211–252 (1964)zbMATHGoogle Scholar
  14. 14.
    Conway, D., White, J.M.: Machine Learning for Hackers. Case Studies and Algorithms to Get You Started. O’Reilly Media, Sebastopol (2012)Google Scholar
  15. 15.
    Finney, D.J.: Transformation of frequency distributions. Nat. Lond. 162, 898 (1948)CrossRefzbMATHGoogle Scholar
  16. 16.
    Marzec, M., Uhl, T., Michalak, D.: Verification of text mining techniques accuracy when dealing with urban buses maintenance data. Diagnostyka 15, 51–57 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mateusz Marzec
    • 1
  • Paweł Morkisz
    • 2
    Email author
  • Jakub Wojdyła
    • 2
  • Tadeusz Uhl
    • 1
  1. 1.Faculty of Mechanical Engineering and RoboticsAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations