Advertisement

ARTool- Augmented Reality Platform for Machining Setup and Maintenance

  • Amedeo Setti
  • Paolo BosettiEmail author
  • Matteo Ragni
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 15)

Abstract

In manufacturing applications, setup and part-program verification on CNC machine tools is a time-consuming and error-prone operation, whose costs are especially relevant when dealing with small batches, custom components, and large/complex shapes. This paper presents an Augmented Reality application aimed at supporting machine tool operators in setting up the machining process, simplifying and quickening the identification of setup errors and misalignments. The paper firstly discusses the system architecture and its implementation, then presents a set of benchmark tests assessing system accuracy and reliability in ego-localization against an open-source AR library and an optical multistereoscopic motion capture ground-truth. Finally, the effectiveness of the proposed solution on the typical part-program setup workflow is assessed by comparison with a standard in-air part-program execution and evaluated by means of a NASA TLX test campaign.

Keywords

Augmented reality CNC Machining Intelligent manufacturing Maintenance 

References

  1. 1.
    Gilbert, W.: Economics of Machining. Machining Theory and Practice, pp. 465–485 (1950)Google Scholar
  2. 2.
    Kalpakjian, S., Schmid, S.R., Kok, C.-W.: Manufacturing Processes for Engineering Materials. Pearson-Prentice Hall, Upper Saddle River (2008)Google Scholar
  3. 3.
    Schaumlöffel, P., Talha, M., Gorecky, D., Meixner, G.: Augmented reality applications for future manufacturing. In: Proceedings of the 5th Manufacturing Science and Education-MSE, vol. 1, no. 5, pp. 2–5 (2011)Google Scholar
  4. 4.
    Wang, X., Love, P.E., Kim, M.J., Park, C.-S., Sing, C.-P., Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 34, 37–44 (2013)Google Scholar
  5. 5.
    Hou, L., Wang, X., Bernold, L., Love, P.E.: Using animated augmented reality to cognitively guide assembly. J. Comput. Civil Eng. 27(5), 439–451 (2013)CrossRefGoogle Scholar
  6. 6.
    Novak-Marcincin, J., Barna, J., Janak, M., Novakova-Marcincinova, L.: Augmented reality aided manufacturing. Proc. Comput. Sci. 25, 23–31 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Kim, M.J., Love, P.E., Kang, S.-C.: Augmented reality in built environment: classification and implications for future research. Autom. Constr. 32, 1–13 (2013)CrossRefGoogle Scholar
  8. 8.
    Ong, S.K., Nee, A.Y.C.: Virtual and Augmented Reality Applications in Manufacturing. Springer, London (2013)Google Scholar
  9. 9.
    Ma, D., Fan, X., Gausemeier, J., Grafe, M.: Virtual Reality & Augmented Reality in Industry. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65(2), 270–278 (2014)CrossRefGoogle Scholar
  11. 11.
    Di Gironimo, G., Mozzillo, R., Tarallo, A.: From virtual reality to web-based multimedia maintenance manuals. Int. J. Interact. Des. Manuf. (IJIDeM) 7(3), 183–190 (2013)CrossRefGoogle Scholar
  12. 12.
    Dong, S., Behzadan, A.H., Chen, F., Kamat, V.R.: Collaborative visualization of engineering processes using tabletop augmented reality. Adv. Eng. Softw. 55, 45–55 (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Ong, S., Nee, A.: Augmented reality aided interactive manual assembly design. Int. J. Adv. Manuf. Technol. 69(5–8), 1311–1321 (2013)CrossRefGoogle Scholar
  14. 14.
    Novak-Marcincin, J., Janak, M., Fečová, V., Novakova-Marcincinova, L.: Utilization of augmented reality elements for visualization of operational states of manufacturing devices. Appl. Mech. Mater. 308, 111–114 (2013). Trans Tech PublicationsCrossRefGoogle Scholar
  15. 15.
    Martínez, H., Laukkanen, S., Mattila, J.: A new hybrid approach for augmented reality maintenance in scientific facilities. In: Ferre, M., Mattila, J., Siciliano, B., Bonnal, P. (eds.) Int. J. Adv. Robot. Syst. 1729, 8806 (2013)Google Scholar
  16. 16.
    Wójcicki, T.: Supporting the diagnostics and the maintenance of technical devices with augmented reality. Diagnostyka 15(1), 43–47 (2014)Google Scholar
  17. 17.
    Bondrea, I., Petruse, R.E.: Augmented reality-an improvement for computer integrated manufacturing. Adv. Mater. Res. 628, 330–336 (2013). Trans Tech PublicationsCrossRefGoogle Scholar
  18. 18.
    Munoz-Salinas, R.: Aruco: a minimal library for augmented reality applications based on OpenCv (2012)Google Scholar
  19. 19.
    Systems, D.: Solidworks Model Based Definitions. http://www.solidworks.it/sw/products/technical-communication/packages.htm (2016). Accessed 11 Feb 2017
  20. 20.
    PTC Inc.: Product Lifecycle Management (PLM) Software. http://www.ptc.com/product-lifecycle-management (2016). Accessed 11 Feb 2017
  21. 21.
    Apple Inc.: SceneKit Framework (2016). https://developer.apple.com/scenekit/
  22. 22.
    Bradski, G., et al.: The opencv library. Doctor Dobbs J. 25(11), 120–126 (2000)Google Scholar
  23. 23.
    Kato, H.: Artoolkit: library for vision-based augmented reality. In: IEICE, PRMU, vol. 6, pp. 79–86 (2002)Google Scholar
  24. 24.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  25. 25.
    Bleser, G., Stricker, D.: Advanced tracking through efficient image processing and visual-inertial sensor fusion. Comput. Graph. 33(1), 59–72 (2009)CrossRefGoogle Scholar
  26. 26.
    Lowe, D.G.: Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Anal. Mach. Intell. 5, 441–450 (1991)CrossRefGoogle Scholar
  27. 27.
    Schweighofer, G., Pinz, A.: Robust pose estimation from a planar target. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2024–2030 (2006)CrossRefGoogle Scholar
  28. 28.
    Collins, D.W., Kimura, D.: A large sex difference on a two-dimensional mental rotation task. Behav. Neurosci. 111(4), 845 (1997)CrossRefGoogle Scholar
  29. 29.
    Hart, S.G.; Nasa-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908. Sage Publications (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.ARToolTrentoItaly
  2. 2.Department of Industrial EngineeringUniversity of TrentoTrentoItaly

Personalised recommendations