Integration of Nanostructured Thermoelectric Materials in Micro Power Generators

  • D. DávilaEmail author
  • A. Tarancón
  • L. Fonseca


The demand for portable power generation required by miniaturized systems with long-lasting autonomous operation is large and expanding. In order to fulfill this demand, high-energy density storage and generation devices are required. Currently, batteries and micro fuel cells represent the technologies available for this purpose. However, true energy autonomy would eventually be better enabled by energy harvesting devices, either by themselves or in combination with storage devices (batteries or capacitors). In this respect, thermoelectric generators may lead to a quite enabling energy autonomy solution in those particular application scenarios in which waste heat or hot surface are available. This chapter serves as a brief introduction to the general principles of thermoelectricity and the state-of-the-art of thermoelectric materials. An overview of the different efforts performed by the research community to develop thermoelectric devices and the implementation approaches followed to fabricate thermoelectric microgenerators based on nanostructured materials is presented.


Thermoelectricity Nanostructured materials Thermoelectric micro generators Energy harvesting Micro/Nanodevices 


  1. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRefGoogle Scholar
  2. Boor J, Kim D, Ao X, Becker M, Hinsche N, Mertig I, Zahn P, Schmidt V (2012) Thermoelectric properties of porous silicon. Appl Phys A 107:789–794CrossRefGoogle Scholar
  3. Böttner H, Nurnus J, Gavrikov A, Kühner G, Jägle M, Künzel C, Eberhard D, Plescher G, Schubert A, Schlereth K-H (2004) New thermoelectric components using microsystem technologies. J Microelectromech Syst 13(3):414–420CrossRefGoogle Scholar
  4. Böttner H, Nurnus J, Schubert A, Volkert F (2007) New high density micro structured thermogenerators for stand alone sensor systems. In: 26th international conference on thermoelectrics. IEEE, pp 306–309Google Scholar
  5. Boukai A, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard W, Heath J (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–71CrossRefGoogle Scholar
  6. Bux S, Blair R, Gogna P, Lee H, Chen G, Dresselhaus M, Kaner R, Fleurial J (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Func Mater 19:2445–2452CrossRefGoogle Scholar
  7. Chen R, Hochbaum A, Murphy P, Moore J, Yang P, Majumdar A (2008) Thermal conductance of thin silicon nanowires. Phys Rev Lett 101(10):1–4CrossRefGoogle Scholar
  8. Curtin B, Bowers J (2012) Thermoelectric properties of silicon nanowire array and spin-on glass composites fabricated with CMOS-compatible techniques. In MRS proceedings 1408:1–6CrossRefGoogle Scholar
  9. Curtin B, Fang E, Bowers J (2012) Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices. J Electron MaterGoogle Scholar
  10. Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2012) Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy 1:812–819CrossRefGoogle Scholar
  11. Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2013) Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators. J Electron Mater 42(7):1918–1925CrossRefGoogle Scholar
  12. Dávila D, Tarancón A, Fernández-Regúlez M, Calaza C, Salleras M, San Paulo A, Fonseca L (2011a) Silicon nanowire arrays as thermoelectric material for a power microgenerator. J Micromech Microeng 21(10):104007CrossRefGoogle Scholar
  13. Dávila D, Tarancón A, Kendig D, Fernández-Regúlez M, Sabaté N, Salleras M, Calaza C, Cané C, Gràcia I, Figueras E, Santander J, San Paulo A, Shakouri A, Fonseca L (2011b) Planar thermoelectric microgenerators based on silicon nanowires. J Electron Mater 40(5):851–855CrossRefGoogle Scholar
  14. Dresselhaus M, Chen G, Tang M, Yang R, Lee H, Wang D, Ren Z, Fleurial J, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053CrossRefGoogle Scholar
  15. Ebling D (2009) Thermoelectrics for high temperatures—a survey of state of the art. In: Energy harvesting workshopGoogle Scholar
  16. Esfarjani K, Chen G, Stokes H (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84(8):085204CrossRefGoogle Scholar
  17. Feser J, Sadhu J, Azeredo B, Hsu K, Ma J, Kim J, Seong M, Fang N, Li X, Ferreira P, Sinha S, Cahill D (2012) Thermal conductivity of silicon nanowire arrays with controlled roughness. J Appl Phys 112(11):114306CrossRefGoogle Scholar
  18. Glatz W, Muntwyler S, Hierold C (2006) Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens Actuators A Phys 132(1):337–345CrossRefGoogle Scholar
  19. Glatz W, Schwyter E, Durrer L, Hierold C (2009) Bi2Te3-based flexible micro thermoelectric generator with optimized design. J Microelectromech Syst 18(3):763–772CrossRefGoogle Scholar
  20. Glosch H, Ashauer M, Pfeiffer U, Lang W (1999) A thermoelectric converter for energy supply. Sens Actuators A Phys 74(1–3):246–250CrossRefGoogle Scholar
  21. Hasebe S, Ogawa J, Shiozaki M, Toriyama T, Sugiyama S, Ueno H, Itoigawa K (2004) Polymer based smart flexible thermopile for power generation. In: 17th IEEE international conference on micro electro mechanical systems (MEMS), pp 689–692Google Scholar
  22. Hicks L, Dresselhaus M (1993a) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRefGoogle Scholar
  23. Hicks L, Dresselhaus M (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634CrossRefGoogle Scholar
  24. Hochbaum A, Chen R, Delgado R, Liang W, Garnett E, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRefGoogle Scholar
  25. Huang Y, Duan X, Cui Y, Lauhon L, Kim K, Lieber C (2001) Logic gates and computation from assembled nanowire building blocks. Science 294 (November):1313–1317Google Scholar
  26. Huesgen T, Woias P, Kockmann N (2008) Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens Actuators A Phys 145–146:423–429CrossRefGoogle Scholar
  27. Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S (2005) Fabrication of flexible thermopile generator. J Micromech Microeng 15(9):S233–S238CrossRefGoogle Scholar
  28. Iyengar A (2010) Synthesis and characterization of micro/nano material for thermoelectric applications. PhD thesis, Case Western Reserve UniversityGoogle Scholar
  29. Leonov V, Van Hoof C, Vullers R (2009) Thermoelectric and hybrid generators in wearable devices and clothes. In: IEEE (ed) Sixth international workshop on wearable and implantable body sensor networks, 2009. BSN 2009. IEEE, pp 195–200Google Scholar
  30. Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934CrossRefGoogle Scholar
  31. Li J-F, Liu W-S, Zhao L-G, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158CrossRefGoogle Scholar
  32. Li Y, Buddharaju K, Singh N, Lo GQ, Lee SJ (2011) Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Lett 32(5):674–676CrossRefGoogle Scholar
  33. Li Y, Buddharaju K, Singh N, Lee S (2012a) Top-down silicon nanowire-based thermoelectric generator: design and characterization. J Electron Mater 41:989–992CrossRefGoogle Scholar
  34. Li Y, Buddharaju K, Tinh B, Singh N, Lee S (2012b) Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett 33(5):715–717CrossRefGoogle Scholar
  35. Lim, J., Snyder G, Huang C-K, Herman J, Ryan M, Fleurial J-P (2002) Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL), pp 535–539Google Scholar
  36. Lindeberg M, Yousef H, Rödjegård H, Martin H, Hjort K (2008) A PCB-like process for vertically configured thermopiles. J Micromech Microeng 18(6):065021CrossRefGoogle Scholar
  37. Nolas G, Cohn J, Slack G, Schujman S (1998) Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl Phys Lett 73(2):178CrossRefGoogle Scholar
  38. Pasold G, Etlin P, Hahn M, Muster U, Nersessian V, Bonfrate D, Buser R, Cucinelli M, Gutsche M, Kehl M, Zäch N, Hazelden R (2011) Powering wireless sensors: microtechnology-based large-area thermoelectric generator for mass applications. Proceedings of IEEE sensors 1:1293–1296Google Scholar
  39. Perez-Marín A, Lopeandía A, Abad L, Ferrando-Villaba P, Garcia G, Lopez A, Muñoz-Pascual F, Rodríguez-Viejo J (2014) Micropower thermoelectric generator from thin Si membranes. Nano Energy 4:73–80CrossRefGoogle Scholar
  40. Ponomareva I, Srivastava D, Menon M (2007) Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett 7(5):1155–1159CrossRefGoogle Scholar
  41. Rowe D (2002) Recent concepts in thermoelectric power generation. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT ’02, pp 365–374Google Scholar
  42. Rowe D (2006a) Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power 1(1):13–23MathSciNetGoogle Scholar
  43. Rowe D (2006b) Thermoelectrics handbook: macro to nano. CRC Press, Taylor & Francis GroupGoogle Scholar
  44. Rowe D, Min G (1996) Design theory of thermoelectric modules for electrical power generation. IEE Proc Sci Meas Technol 143(6):351–356CrossRefGoogle Scholar
  45. Rowe D, Morgan D, Kiely J (1989) Miniature low-power/high-voltage thermoelectric generator. Electron Lett 25(2):166–168Google Scholar
  46. Sales B, Mandrus D, Williams R (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272(5266):1325–1328CrossRefGoogle Scholar
  47. Schierning G (2014) Silicon nanostructures for thermoelectric devices: a review of the current state of the art. Phys Status Solidi (A) 211(6):1235–1249CrossRefGoogle Scholar
  48. Schierning G, Theissmann R, Stein N, Petermann N, Becker A, Engenhorst M, Kessler V, Geller M, Beckel A, Wiggers H, Schmechel R (2011) Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J Appl Phys 110(11):113515CrossRefGoogle Scholar
  49. Singh R (2008) Experimental characterization of thin film thermoelectric materials and film deposition via molecular beam epitaxy. PhD thesis, University of California Santa CruzGoogle Scholar
  50. Slack G (1995) New materials and performance limits for thermoelectric cooling, Chapter 34. CRC Press, Boca Raton, pp 407–440Google Scholar
  51. Slack G, Tsoukala V (1994) Some properties of semiconducting IrSb3. J Appl Phys 76(3):1665CrossRefGoogle Scholar
  52. Snyder G, Lim J, Huang C-K, Fleurial J-P (2003) Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat Mater 2:528–531CrossRefGoogle Scholar
  53. Snyder G, Toberer E (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRefGoogle Scholar
  54. Stark I, Stordeur M (1999) New micro thermoelectric devices based on bismuth telluride-type thin solid films. In: Eighteenth international conference on thermoelectrics. Proceedings, ICT’99 (Cat. No. 99TH8407), pp 465–472Google Scholar
  55. Stordeur M, Stark I (1997) Low power thermoelectric generator—self-sufficient energy supply for micro systems. In: Proceedings of the 16th international conference on thermoelectrics, pp 575–577Google Scholar
  56. Stordeur M, Stark I (2003) DTS: thin film thermoelectric generator systems GmbH. In: Proceedings of the 22nd international conference on thermoelectrics, vol 97, p 661Google Scholar
  57. Stranz A, Kähler J, Merzsch S, Waag A, Peiner E (2012) Nanowire silicon as a material for thermoelectric energy conversion. Microsyst Technol 18:857–862CrossRefGoogle Scholar
  58. Stranz A, Sökmen Ü, Kähler J, Waag A, Peiner E (2011a) Measurements of thermoelectric properties of silicon pillars. Sens Actuators A Phys 171(1):48–53Google Scholar
  59. Stranz A, Waag A, Peiner E (2011b) Thermal characterization of vertical silicon nanowires. J Mater Res 26(15):1958–1962CrossRefGoogle Scholar
  60. Stranz A, Waag A, Peiner E (2013) High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J Electron Mater 42(7):2233–2238CrossRefGoogle Scholar
  61. Strasser M, Aigner R, Franosch M, Wachutka G (2002) Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens Actuators A Phys 97–98(1–2):535–542CrossRefGoogle Scholar
  62. Strasser M, Aigner R, Lauterbch C, Sturm T, Franosch M, Wachutka G (2003) Micromachined CMOS thermoelectric generators as on-chip power supply. In: TRANSDUCERS ’03. 12th international conference solid-state sensors, actuators microsystems. IEEEGoogle Scholar
  63. Su J, Leonov V, Goedbloed M, van Andel Y, de Nooijer M, Elfrink R, Wang Z, Vullers R (2010a) A batch process micromachined thermoelectric energy harvester: fabrication and characterization. J Micromech Microeng 20(10):104005CrossRefGoogle Scholar
  64. Su J, Vullers R, Goedbloed M, van Andel Y, Leonov V, Wang Z (2010b) Thermoelectric energy harvester fabricated by Stepper. Microelectron Eng 87(5–8):1242–1244CrossRefGoogle Scholar
  65. Tan Y, Panda S (2010) Review of energy harvesting technologies for sustainable wireless sensor network. InTechGoogle Scholar
  66. U.S. Department of Energy (2010) Critical materials strategy, Technical reportGoogle Scholar
  67. van Andel Y, Jambunathan M, Vullers R, Leonov V (2010) Membrane-less in-plane bulk-micromachined thermopiles for energy harvesting. Microelectron Eng 87(5–8):1294–1296CrossRefGoogle Scholar
  68. Venkatasubramanian R, Watkins C, Caylor C, Bulman G (2006) Microscale thermoelectric devices for energy harvesting and thermal management. In: PowerMEMS 2006. The 6th international workshop on micro and nanotechnology for power generation and energy conversion applications, pp 1–4Google Scholar
  69. Vining C (2007) ZT = 3.5: fifteen years of progress and things to come. In: The 5th European conference on thermoelectrics ECT 2007, pp 6–11Google Scholar
  70. Wang W, Jia F, Huang Q, Zhang J (2005) A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron Eng 77(3–4):223–229CrossRefGoogle Scholar
  71. Wang X (2012) Piezoelectric nanogenerators–harvesting ambient mechanical energy at the nanometer scale. Nano Energ 1(1):13–24CrossRefGoogle Scholar
  72. Wang X, Song J, Liu J, Wang Z (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–106CrossRefGoogle Scholar
  73. Weber L, Gmelin E (1991) Transport properties of silicon. Appl Phys A 140:136–140CrossRefGoogle Scholar
  74. Whalen S, Apblett C, Aselage T (2008) Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J Power Sources 180:657–663CrossRefGoogle Scholar
  75. Winder E, Ellis A, Lisensky G (1996) Thermoelectric devices: solid-state refrigerators and electrical generators in the classroom. J Chem Educ 73(10):940CrossRefGoogle Scholar
  76. Xie J, Lee C, Feng H (2010) Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324CrossRefGoogle Scholar
  77. Yang J, Chen Y, Peng J, Song X, Zhu W, Su J, Chen R (2004) Synthesis of CoSb3 skutterudite by mechanical alloying. J Alloys Compd 375(1–2):229–232CrossRefGoogle Scholar
  78. Yu J-K, Mitrovic S, Tham D, Varghese J, Heath J (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718–721CrossRefGoogle Scholar
  79. Yu L, Roca i Cabarrocas P, (2010) Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Phys Rev B 81(8):1–11Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Science & Technology DepartmentIBM Research - Zurich LabRüschlikonSwitzerland
  2. 2.Catalonia Institute for Energy Research (IREC)BarcelonaSpain
  3. 3.Institute of Microelectronics of Barcelona (IMB-CNM), Campus Universitat Autònoma de Barcelona (UAB)Cerdanyola Del VallèsSpain

Personalised recommendations