Advertisement

Pasture Degradation in South East Brazil: Status, Drivers and Options for Sustainable Land Use Under Climate Change

  • Dietmar SattlerEmail author
  • Roman Seliger
  • Udo Nehren
  • Friederike Naegeli de Torres
  • Antonio Soares da Silva
  • Claudia Raedig
  • Helga Restum Hissa
  • Jürgen Heinrich
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

The landscapes of the Atlantic Forest region of Southeast Brazil (SE Brazil) have suffered from a long-term historical deforestation and degradation. The vast majority of former forest areas had been transformed into sugar cane and coffee plantations. Especially in the state of Rio de Janeiro, these crops are no longer economically viable and most of the former plantations have been converted into cattle pastures. Due to unsuitable environmental conditions and unsustainable management, most of these pastures are nowadays highly degraded. Taking into account projected climate change with increasing droughts and pronounced heavy rainfalls in SE-Brazil, this pasture landscape is about to lose its socio- ecological resilience. Before this background, this paper analyses the status and drivers of pasture degradation in the Brazilian state of Rio de Janeiro. Moreover, it addresses possible options for pasture rehabilitation based on a case study carried out within the framework of the Brazilian-German INTECRAL project. Additionally, it explores the role of pastures as opportunity areas for climate change mitigation by enhancing the carbon storage capacity at landscape level. As the study is based on a scientific cooperation with the Rio de Janeiro State Secretary of Agriculture as implementation partner, it is expected that experiences presented in this paper will be useful to Brazilian stakeholders and decision makers for improving the adaption to exacerbating environmental conditions in rural areas, driven by climate change and inappropriate land use.

Keywords

Pasture degradation Land use systems Atlantic forest Climate change adaption 

Notes

Acknowledgements

We like to thank the German Federal Ministry of Education and Research (BMBF) for funding the research and development Projects “DINARIO” (FKZ 01LB0801B) and “INTECRAL” (033L162F) and the Rio de Janeiro State Secretariat of Agriculture and Livestock(SEAPEC), hosting the Rio de Janeiro sustainable rural development project (Rio Rural) for facilitating a fruitful cooperation. Furthermore, we are grateful to the staff of EMATER-Rio, PESAGRO-Rio and EMBRAPA Solos for providing excellent logistic backup. Special thanks to Juliana Marisa Santos (Institute of Geography, University of Jena, Germany) and Giuseppe Latorraca for their outstanding support of pilot measure implementation and field research.

References

  1. Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260(5):679–691CrossRefGoogle Scholar
  2. Araujo EA, Lani JL, Amaral EF, Guerra A (2004) Land use and physical and chemical properties of a distrophic Yellow Argisol in the western Amazon region. Revista Brasileira De Ciencia Do Solo 28(2):307–315CrossRefGoogle Scholar
  3. Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234CrossRefGoogle Scholar
  4. Balbino LC, Barcellos ADO, Stone LF (Eds) (2011) Marco referencial: integração lavoura-pecuária-floresta. EMBRAPA, Brasilia, 130 ppGoogle Scholar
  5. Barbosa JM, Melendez-Pastor I, Navarro-Pedreno J, Bitencourt MD (2014) Remotely sensed biomass over steep slopes: an evaluation among successional stands of the Atlantic Forest, Brazil. Isprs J Photogramm Remote Sens 88:91–100CrossRefGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  7. Cabral DC, Fiszon JT (2004) Padrões sócio-espaciais de desflorestamento e suas implicações para a fragmentação florestal: estudo de caso na Bacia do Rio Macacu, RJ. Scientia Forestalis 66:13–24Google Scholar
  8. Clausing P (2011) Peak soil: soil destruction and the food crisis—the loss of fertile land and how to avoid it. Local land and soil news no.38/39 II. Bull Eur Land Soil Alliance (ELSA) e.VGoogle Scholar
  9. Dantas ME, Coelho Netto AL (1995) Impacto do ciclo cafeeiro na evolução da paisagem geomorphológica no medio vale do Rio Paraiba do Sul. Cad. Geosciências, S. 15–22Google Scholar
  10. De Moraes LFD, Assumpção JM, Pereira TS, Luciari C (2013) Manual Técnico para a Restauração de Áreas Degradadas no Estado do Rio de Janeiro. Instituto de Pesquisas Jardim Botanico de Rio de Janeiro, Rio de Janeiro, 108 ppGoogle Scholar
  11. Dean W (1995) A Ferro e Fogo – a história e a devastação da Mata Atlântica Brasileira. Ed. Schwarcz Ltda., 483 S., São PauloGoogle Scholar
  12. Dereczynski C, Silva WL, Marengo J (2013) Detection and Projections of Climate Change in Rio de Janeiro, Brazil. Am J Clim Change 2:25–33CrossRefGoogle Scholar
  13. Dias-Filho MB (2014) Diagnóstico das Pastagens no Brasil. Embrapa Amazônia Oriental, Belém, 36 ppGoogle Scholar
  14. Diniz AR, Machado DL, Pereira MG, Balieiro FDC, Menezes CEG (2015) Biomassa, estoques de carbono e de nutrientes em estádios sucessionais da Floresta Atlântica, RJ. Rev Bras de Ciências Agrárias 10(3):443–451Google Scholar
  15. Eisenlohr P, de Oliveira-Filho A, Prado J (2015) The Brazilian Atlantic Forest: new findings, challenges and prospects in a shrinking hotspot. Biodivers Conserv 24:2129–2133CrossRefGoogle Scholar
  16. Galdino S, Sano EE, Andrade RG, Grego CR, Nogueira SF, Bragantini C, Flosi AHG (2015) Large-scale modeling of soil Erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad Dev 27:773–784CrossRefGoogle Scholar
  17. Galindo Leal C, de Gusmão Câmara (Eds) (2003) The Atlantic Forest of South America: biodiversity status, threats, and outlook (state of the hotspots, 1). Center for Applied Biodiversity Science at Conservation International. Island Press, Washington D.C., 488 SGoogle Scholar
  18. Hebner A, Kopielski K, Dulleck A, Gerth A, Sattler D, Seliger R, Hissa HR (2016) Bioengineered measures for prevention of proceeding soil degradation as a result of climate change in South East Brazil. In: Leal Filho W, Gallo E, Coelho Netto AL (eds) Climate Change Adaptation in Latin America: managing vulnerability, fostering resilience. Climate Change Management, Springer Int, Pub. SwitzerlandGoogle Scholar
  19. IBAMA (1990) Manual de recuperação de áreas degradadas pela mineração: técnicas de revegetação. Brasília, 96 ppGoogle Scholar
  20. IBGE—Instituo Brasileiro de Geografía e Estatistica (2013) Produção da pecuaria municipal. Vol. 41, Rio de Janeiro, 108 ppGoogle Scholar
  21. IBGE—Instituo Brasileiro de Geografía e Estatistica (2014) Estimativas da população residente no brasil e unidades da federação com data de referência em 1º de julho de 2014. Diário Oficial da União, em 28 de agosto de 2014, BrasiliaGoogle Scholar
  22. INEA—Instituto Estadual do Ambiente (2015) Protocol for the technical study of RPPNs, Rio de JaneiroGoogle Scholar
  23. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204(3):459–473CrossRefGoogle Scholar
  24. Junior PRR, Silva VM, Guimarães GP (2013) Degradação de pastagens brasileiras e práticas de recuperação. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia 9(17):952–968Google Scholar
  25. Liaw A, Wiener M (2015) randomForest: Breiman and Cutler’s random forests for classification and regression. R package version 4. 6–10. Online available: https://cran.r-project.org/web/packages/randomForest/ randomForest.pdf
  26. Latawiec AE, Strassburg BBN, Valentim JF, Ramos F, Alves-Pinto HN (2014) Intensification of cattle ranching production systems: socioeconomic and environmental synergies and risks in Brazil. Animal 8(8):1255–1263CrossRefGoogle Scholar
  27. Lindner A, Sattler D (2012) Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro, Brazil. New Forests 43(3):287–301CrossRefGoogle Scholar
  28. Nachtergaele R, Biancalani R, Petri M (2011) Land degradation. SOLAW Background Thematic Report 3Google Scholar
  29. Nehren U, Kirchner A, Sattler D, Turetta A, Heinrich J (2013) Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro. Brazil. Anais Academia Brasileira de Ciências 85(2):311–332Google Scholar
  30. Nehren U, Kirchner A, Heinrich J (2016) What do yellowish-brown soils and stone layers tell us about Late Quaternary landscape evolution and soil development in the humid tropics? A field study in the Serra dos Órgãos, Southeast Brazil. CATENA 137:173–190CrossRefGoogle Scholar
  31. Nascimento LM, Sampaio E, Rodal MJN, Lins-e-Silva ACB (2014) Secondary succession in a fragmented Atlantic Forest landscape: evidence of structural and diversity convergence along a chronosequence. J For Res 19(6):501–513CrossRefGoogle Scholar
  32. Nogueira Junior LR, Engel VL, Parrotta JA, Galvao de Melo AC, Re DS (2014) Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands. Biota Neotrop 14(2):1–9CrossRefGoogle Scholar
  33. Niyogi DK, Koren M, Arbuckle CJ, Townsend CR (2007) Stream communities along a catchment land-use gradient: Subsidy-stress responses to pastoral development. Environ Manage 39(2):213–225CrossRefGoogle Scholar
  34. Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manage 99(1–2):1–7CrossRefGoogle Scholar
  35. Team RC (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Accessed 9 May 2016
  36. Raedig C, Lautenbach S (2009) Broad-scale angiosperm diversity in Brazil’s Mata Atlântica: using monographic data to assess prospects for conservation. In: Gaese H, Torrico JC, Wesenberg J, Schlüter S (eds) Biodiversity and land use systems in the fragmented Mata Atlântica of Rio de Janeiro, Cuvillier Verlag Göttingen pp 217–243Google Scholar
  37. Robinson SJB, van den Berg E, Meirelles GS, Ostle N (2015) Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest. Biodivers Conserv 24:2273–2291CrossRefGoogle Scholar
  38. Salazar A, Baldi G, Hirota M, Syktus J, McAlpine C (2015) Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. Global Planet Change 128:103–119CrossRefGoogle Scholar
  39. Sattler D, Murray LT, Kirchner A, Lindner A (2014) Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South Eastern Brazil. Ecol Eng 73:126–131CrossRefGoogle Scholar
  40. Secretaria de Estado do Ambiente do Estado do Rio de Janeiro (SEA) (2011) O estado do ambiente: indicadores ambientais do Rio de Janeiro. Rio de Janeiro/INEA.160 ppGoogle Scholar
  41. Silva AS (2010) Recuperação e reabilitação de áreas degradadas por mineração na zona rural de Santo Antonio de Pádua (RJ). Relatório técnico Edital MCT/CNPq/CT-Agronegócio n° 26/2010Google Scholar
  42. Silva AS, Botelho RGM (2014) Degradação dos solos no estado do Rio de Janeiro. In: Guerra AJT, Jorge MCO (eds) Degradação dos Solos no Brasil. 1ed.Rio de Janeiro: Bertrand Brasil, 2014, v., pp 261–292Google Scholar
  43. Sparovek G, Correchel V, Barretto A (2007) The risk of erosion in Brazilian cultivated pastures. Sci Agri 64(1):77–82CrossRefGoogle Scholar
  44. Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, da Silva VP, Valentin JF, Vianna M, Assad ED (2014) When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Change-Hum Policy Dimens 28:84–97CrossRefGoogle Scholar
  45. Tiepolo G, Calmon M, Feretti AR (2002) Measuring and Monitoring Carbon stocks at the Guaraquecaba climate action project, Parana, Brazil. Taiwan For Res Inst Ext Ser 153:98–115Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dietmar Sattler
    • 1
    Email author
  • Roman Seliger
    • 1
  • Udo Nehren
    • 4
  • Friederike Naegeli de Torres
    • 1
  • Antonio Soares da Silva
    • 2
  • Claudia Raedig
    • 4
  • Helga Restum Hissa
    • 3
  • Jürgen Heinrich
    • 1
  1. 1.Institute of Geography, Physical Geography and Environmental ResearchUniversity of LeipzigLeipzigGermany
  2. 2.Laboratory of Physical Geography, Institute of GeographyState University of Rio de Janeiro - UERJRio de JaneiroBrazil
  3. 3.Secretariat of Agriculture and Livestock of the State of Rio de Janeiro - SEAPEC, Rio Rural ProgrammeNiteróiBrazil
  4. 4.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)Technische Hochschule Köln, University of Applied SciencesCologneGermany

Personalised recommendations