A GIS-Based Decision Support System for Locating Primary Care Facilities

  • Melanie Reuter-Oppermann
  • Daniel Rockemann
  • Jost Steinhäuser
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 279)

Abstract

Keeping up a high level of primary care services for a whole country or even a federal state is a very challenging task due to the demographic change and many other reasons, also for Germany. In the future it is expected that even more general practitioners (GP) are necessary to cover close to come healthcare. Therefore, an efficient use of resources and an optimized planning is crucial. Mathematical models and approaches can help facing the challenge by determining optimal locations for practices, shift schedules or appointment strategies, for example. To use these in practice, decision support systems (DSS) are necessary that link the input data to the approaches and display the results. The outline of such a decision support system for optimally locating GP practices is presented in this paper.

Keywords

Primary care services General practitioners Decision support tool Location planning 

References

  1. 1.
    Stock, C., Szecsenyi, J., Riedinger-Riebl, U., Steinhuser, J.: Projection of general practitioner care demand at the community level. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)), 77(12), 939–946 (2015)Google Scholar
  2. 2.
    Starfield, B., Shi, L., Macinko, J.: Contribution of primary care to health systems and health. Milbank Q. 83(3), 457–502 (2005)CrossRefGoogle Scholar
  3. 3.
    Breslin, J.M., MacRae, S.K., Bell, J., Singer, P.A.: Top 10 health care ethics challenges facing the public: views of Toronto bioethicists. BMC Med. Ethics 6(1), E5 (2005)Google Scholar
  4. 4.
    Kassenärztliche Bundesvereinigung: Berufsmonitoring Medizinstudenten 2014. http://www.kbv.de/media/sp/2015_04_08_Berufsmonitoring_2014_web.pdf
  5. 5.
    Flum, E., Magez, J., Aluttis, F., Hoffmann, M., Joos, S., Ledig, T., Oeljeklaus, L., Simon, M., Szecsenyi, J., Steinhuser, J.: Verbundweiterbildung (plus) Baden-Wrttemberg: Development of educational meetings and implications for the implementation of family medicine training programmes in Germany. Zeitschrift fur Evidenz, Fortbildung und Qualitat im Gesundheitswesen 112 (2016)Google Scholar
  6. 6.
    Scherer, M., Abholz, H.H., Chenot, J.F., Gerlach, F.M., Kochen, M.M.: Allgemeinmedizin und Familienmedizin. In: Lehrbuch der Versorgungsforschung, pp. 337–341. Schattauer Verlag, Stuttgart (2011)Google Scholar
  7. 7.
    Riens, B., Erhard, M., Mangiapane, S.: Arztkontakte im Jahr 2007. Zentralinstitut fr die kassenrztliche Versorgung in Deutschland (Zi). Versorgungsatlas-Bericht Nr. 12/02, Berlin (2012)Google Scholar
  8. 8.
    Günes, E.D., Nickel, S.: Location problems in health care. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science, pp. 555–579. Springer, Cham (2015)Google Scholar
  9. 9.
    Daskin, M.S., Dean, L.K.: Location of health care facilites. In: Operations Research and Health Care: A Handbook of Methods and Applications, pp. 43–76. Kluwer, New York (2004)Google Scholar
  10. 10.
    Afshari, H., Peng, Q.: Challenges and solutions for location of healthcare facilities. Ind. Eng. Manag. 3, 127 (2014)Google Scholar
  11. 11.
    Forgionne, G.A., Gangopadhyay, A., Adya, M., Tan, J.K.: BCAS: A Web-enabled and GIS-based Decision Support System for the Diagnosis and Treatment of Breast Cancer. e-Publications@Marquette (2001)Google Scholar
  12. 12.
    Patel, A., Waters, N.: Using geographic information systems for health research. In: Alam, B.M. (ed.) Application of Geographic Information Systems. InTech (2012)Google Scholar
  13. 13.
    Goli, A., Ansarizade, N., Barati, O., Kavosi, Z.: Location of road emergency stations in fars province, using spatial multi-criteria decision making. Bull. Emerg. Trauma 3(1), 8–15 (2015)Google Scholar
  14. 14.
    Schuurman, N., Fiedler, R.S., Grzybowski, S.C.W., Grund, D.: Defining rational hospital catchments for non-urban areas based on travel-time. Int. J. Health Geograph. 5(1), 43 (2006)Google Scholar
  15. 15.
    Church, R., ReVelle, C.: The maximum covering location problem. Papers Reg. Sci. Assoc. 32(1), 101–118 (1974)CrossRefGoogle Scholar
  16. 16.
    Sherman, G.: The PyQGIS Programmer’s Guide - Extending QGIS 2.x with Python. Locate Press LLC, Chugiak (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Melanie Reuter-Oppermann
    • 1
  • Daniel Rockemann
    • 1
  • Jost Steinhäuser
    • 2
  1. 1.Karlsruhe Service Research Institute (KSRI), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Family MedicineUniversity Medical Center Schleswig-Holstein, Campus LübeckLübeckGermany

Personalised recommendations