Towards Requirements Analytics: A Research Agenda to Model and Evaluate the Quality of Unstructured Requirements Specifications

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 279)


Communication between actors in a service system can be based on unstructured text. The quality of this text is crucial for the effort and output of a service system. The paper presents an approach to evaluate and model the quality by using requirements from automotive development projects as practical example. The aim is to define quality by using relevant attributes and quantifiable measures. First results include the development of an assessment tool and an initial analysis of the available dataset.


Service systems Software requirements Analytics Machine learning Automotive software Requirements quality Quality metrics Quality measurement 



The author would like to thank Léa Vernisse for her general support regarding the implementation of the assessment tool and her input for the research issues as well as Gerhard Satzger for his continuous support.


  1. 1.
    Maglio, P.P., Vargo, S.L., Caswell, N., Spohrer, J.: The service system is the basic abstraction of service science. Inf. Syst. E-Bus. Manage. 7(4), 395–406 (2009)CrossRefGoogle Scholar
  2. 2.
    Tien, J.M., Berg, D.: On services research and education. J. Syst. Sci. Syst. Eng. 15(3), 257–283 (2006)CrossRefGoogle Scholar
  3. 3.
    Lusch, R.F., Vargo, S.L.: The Service-Dominant Logic of Marketing: Dialog, Debate, and Directions. M.E. Sharpe, New York (2006)Google Scholar
  4. 4.
    Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service systems. Comput. (Long. Beach. Calif.) 40, 71–77 (2007)Google Scholar
  5. 5.
    Böhmann, T., Leimeister, J.M., Möslein, K., Leimeister, J.: Service systems engineering. Bus. Syst. Eng. 6(2), 73–79 (2014)CrossRefGoogle Scholar
  6. 6.
    Gaiardelli, P., Songini, L., Saccani, N.: The automotive industry: heading towards servitization in turbulent times. In: Servitization in Industry (2014).
  7. 7.
    Verstrepen, S., Deschoolmeester, D., Berg, R.J.: Servitization in the automotive sector: creating value and competitive advantage through service after sales. In: Mertins, K., Krause, O., Schallock, B. (eds.) Global Production Management. ITIFIP, vol. 24, pp. 538–545. Springer, Boston (1999). doi:10.1007/978-0-387-35569-6_66 CrossRefGoogle Scholar
  8. 8.
    Westphal, I., Nehls, J., Wiesner, S., Thoben, K.-D.: Steigerung der Attraktivität von Elektroautomobilen durch neue Produkt-Service-Kombinationen. Industrie Manage. 5, 19–24 (2013)Google Scholar
  9. 9.
    Broy, M.: Automotive software and systems engineering. In: Proceedings of the Second ACM and IEEE International Conference on Formal Methods and Models for Co-design, pp. 143–149 (2005)Google Scholar
  10. 10.
    Grimm, K.: Software technology in an automotive company: major challenges. In: Proceedings of the 25th International Conference on Software Engineering, pp. 498–503. IEEE Computer Society (2003)Google Scholar
  11. 11.
    Kneuper, R., Sollmann, F.: Normen zum Qualitätsmanagement bei der Softwareentwicklung. Informatik Spektrum. 18(6), 314–323 (1995)Google Scholar
  12. 12.
    Wilson, W.: Writing effective natural language requirements specifications. In: Software Technology Conference, pp. 1–14 (1997)Google Scholar
  13. 13.
    Alshazly, A., Elfatatry, A., Abougabal, M.: Detecting defects in software requirements specification. Alexandria Eng. J. 53(3), 513–527 (2014)CrossRefGoogle Scholar
  14. 14.
    Juristo, N., Moreno, A.M., Silva, A.: Is the European industry moving toward solving requirements engineering problems? IEEE Softw. 19(6), 70–77 (2002)CrossRefGoogle Scholar
  15. 15.
    Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A.: Identifying and measuring quality in a software requirements specification. In: IEEE Software Metrics Symposium, pp. 141–152 (1993)Google Scholar
  16. 16.
    Lochmann, K., Fernández, D.M., Wagner, S.: A case study on specifying quality requirements using a quality model. In: APSEC, pp. 577–582 (2012)Google Scholar
  17. 17.
    Mund, J.: Quality Assessment of Requirement Specifications Using Metrics–A Research Proposal (2013)Google Scholar
  18. 18.
    Bellotti, M., Mariani, R.: How future automotive functional safety requirements will impact microprocessors design. Microelectron. Reliabil. 50(9), 1320–1326 (2010)CrossRefGoogle Scholar
  19. 19.
    Papadopoulos, Y., Parker, D., Grante, C.: Automating the failure modes and effects analysis of safety critical systems. In: Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering, pp. 310–311 (2004)Google Scholar
  20. 20.
    Weber, M., Weisbrod, J.: Requirements engineering in automotive development-experiences and challenges. In: Proceedings of the IEEE International Conference on Requirements Engineering, pp. 331–340 (2002)Google Scholar
  21. 21.
    Génova, G., Fuentes, J., Llorens, J., Hurtado, O., Moreno, V.: A framework to measure and improve the quality of textual requirements. Requir. Eng. 18(1), 25–41 (2013)CrossRefGoogle Scholar
  22. 22.
    Parra, E., Dimou, C., Llorens, J., Moreno, V., Fraga, A.: A methodology for the classification of quality of requirements using machine learning techniques. Inf. Softw. Technol. 67, 180–195 (2015)CrossRefGoogle Scholar
  23. 23.
    Femmer, H., Méndez Fernández, D., Wagner, S., Eder, S.: Rapid quality assurance with requirements smells. J. Syst. Softw. 123, 190–213 (2015)CrossRefGoogle Scholar
  24. 24.
    Brocke, V., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the 17th European Conference on Information Systems, Verona, pp. 2206–2217 (2009)Google Scholar
  25. 25.
    Rowley, J., Slack, F.: Conducting a literature review. Manage. Res. News 27(6), 31–39 (2004)CrossRefGoogle Scholar
  26. 26.
    Ebert, C.: Systematisches Requirements Engineering: Anforderungen ermitteln, dokumentieren, analysieren und verwalten. dpunkt.verlag, Heidelberg (2014)Google Scholar
  27. 27.
    Rupp, C., Klaus, P.: Basiswissen Requirements Engineering: Aus-und Weiterbildung nach IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level. dpunkt.verlag, Heidelberg (2015)Google Scholar
  28. 28.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)Google Scholar
  29. 29.
    IEEE Std. 830-1998: Recommended Practice for Software Requirements Specification. IEEE (1998)Google Scholar
  30. 30.
    Kaindl, H., Lutz, B., Tippold, P.: Methodik der Softwareentwicklung: Vorgehensmodell und State of the art der professionellen Praxis. Springer Fachmedien Wiesbaden GmbH, Wiesbaden (1998)CrossRefMATHGoogle Scholar
  31. 31.
    vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.: Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun. Assoc. Inf. Syst. 37(1), 205–224 (2015)Google Scholar
  32. 32.
    Cooper, H.: Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Technol. Policy 1, 104–126 (1988)CrossRefGoogle Scholar
  33. 33.
    Walstrom, K.A., Hardgrave, B.C.: Forums for information systems scholars: III. Inf. Manage. 39(2), 117–124 (2001)CrossRefGoogle Scholar
  34. 34.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 step-by-step data mining guide (2000)Google Scholar
  35. 35.
    Kivinen, J., Warmuth, M.K., Auer, P.: The perceptron algorithm versus winnow: linear versus logarithmic mistake bounds when few input variables are relevant. Artif. Intell. 97(1–2), 325–343 (1997)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683 Google Scholar
  37. 37.
    Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. Department of Computer Science and Information Engineering, National Taiwan University (2003)Google Scholar
  38. 38.
    Saunders, M., Lewis, P., Thornhill, A.: Research Methods for Business Students, 6th edn. Pearson Education, Harlow (2012)Google Scholar
  39. 39.
    King, N.: Using interviews in qualitative research. In: Cassell, C., Symon, G. (eds.) Essential Guide to Qualitative Methods in Organizational Research, pp. 11–22. Sage, London (2004)CrossRefGoogle Scholar
  40. 40.
    Dröschel, W., Wiemers, M.: Das V-Modell 97: der Standard für die Entwicklung von IT-Systemen mit Anleitung für den Praxiseinsatz. Walter de Gruyter GmbH & Co. KG (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Karlsruhe Service Research Institute (KSRI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations