From Data Science to Value Creation

  • Jürg MeierhoferEmail author
  • Kevin Meier
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 279)


Value creation with data science methodologies generates important insights. However, these insights do not systematically provide service value to customers. Therefore, we show a systematic approach to use data science for the process of service design. We develop a structure of data science methodologies in the dimensions of their potential to create service benefit. This enables the mapping of the value contribution of the data science tools on the different perspectives and phases of the service design process. Based on this mapping, a direct link can be established between the outcomes of the data science methodologies and the value drivers for the customer. The resulting new methodology allows the systematic value creation from insights generated by data science.


Service science Data science Service design Data product design Data-driven value creation 


  1. 1.
    Provost, F.P., Fawcett, T.: Data Science for Business. O’Reilly, Sebastopol (2013)Google Scholar
  2. 2.
    Siegel, E.: Predictive Analytics. Wiley, Hoboken (2016)Google Scholar
  3. 3.
    Lusch, F.L., Vargo, S.L.: Service-Dominant Logic. Cambridge University Press, Cambridge (2014)Google Scholar
  4. 4.
    Peters, C., Maglio, P., Badinelli, R., Harmon, R.R., Maull, R., Spohrer, J.C., et al.: Emerging digital frontiers for service innovation. Commun. Assoc. Inf. Syst. 39(1), 136–139 (2016)Google Scholar
  5. 5.
    Spohrer, J., Demirkan, H., Lyons, K.: Social value: a service science perspective. In: Kijima, K. (ed.) Service Systems Science. TSS, vol. 2, pp. 3–35. Springer, Tokyo (2015). doi: 10.1007/978-4-431-54267-4_1 Google Scholar
  6. 6.
    Loukides, M.: The Evolution of Data Products. O’Reilly, Sebastopol (2011)Google Scholar
  7. 7.
    Howard, J., Zwemer, M., Loukides, M.: Designing Great Data Products. O’Reilly, Sebastopol (2012)Google Scholar
  8. 8.
    Scherer, J.O., Kloeckner, A.P., Duarte Ribeiro, J.L., Pezzotta, G., Pirola, F.: Product-service system (PSS) design: using design thinking and business analytics to improve PSS design. In: Procedia CIRP, vol. 47, pp. 341–346. Elsevier, Amsterdam (2016)Google Scholar
  9. 9.
    Wang, B., Miao, Y., Zhao, H., Jin, J., Chen, Y.: A biclustering-based method for market segmentation using customer pain points. Eng. Appl. Artif. Intell. 47, 101–109 (2016)CrossRefGoogle Scholar
  10. 10.
    Kwong, C.K., Huimin, J., Luo, X.G.: AI-based methodology of integrating affective design, engineering, and marketing for defining design specifications of new products. Eng. Appl. Artif. Intell. 47, 49–60 (2016)CrossRefGoogle Scholar
  11. 11.
    Osterwalder, A., Pigneur, Y., Bernarda, G., Smith, A.: Value Proposition Design: How to Create Products and Services Customers Want. Wiley, Hoboken (2014)Google Scholar
  12. 12.
    Polaine, A., Løvlie, L., Reason, B.: Service Design: From Insight to Implementation. Rosenfeld Media, Brooklyn (2013)Google Scholar
  13. 13.
    Brenner, W., Uebernickel, F. (eds.): Design Thinking for Innovation Research and Practice. Springer, Cham (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Data Analysis and Process DesignZurich University of Applied SciencesWinterthurSwitzerland

Personalised recommendations