Advertisement

Multi-sensor Tracking System: Towards More Intelligent Roads

  • Olatz Iparraguirre Gil
  • Borja Nuñez Barrionuevo
  • Joshua Puerta Prieto
  • Luis Matey Muñoz
  • Irantzu Bores
  • Alfonso Brazalez Guerra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10222)

Abstract

Road Safety is a major societal issue, and the EU Commission has adopted an ambitious programme, which sets out a mix of initiatives focussing on the improvement of vehicle and infrastructure safety and road user behaviour. The road conditions play a very important role in this target up to the extent that it is an indispensable information for infrastructure managers who alert road users about driving conditions. Nowadays, some static cameras installed on the main highway stretches detect events like fallen trees, obstacles on the road or traffic jams. In addition, meteorological condition information is given by weather stations. However, these resources have some limitations, they cannot cover the whole road network infrastructure and the information they provide is not very precise. A solution for this matter lies in the use of fleets as a multi-sensor tracking system in order to give a better service of real time traffic information. The purpose of this paper is to describe how this solution could be addressed in the framework of a project under development by Ceit and Gertek.

Keywords

Road safety Road condition Alert Driving condition Multi-sensor tracking system Real time traffic information 

References

  1. 1.
    Dirección General de Tráfico. Anuario estadístico de accidentes 2015, pp. 171–173 (2015). http://www.dgt.es/Galerias/seguridad-vial/estadisticas-e-indicadores/publicaciones/anuario-estadistico-de-accidentes/anuario-accidentes-2015.pdf
  2. 2.
    Alhassan, H.M., Ben-Edigbe, J.: Highway capacity prediction in adverse weather. J. Appl. Sci. 11(12), 2193–2199 (2011). doi: 10.3923/jas.2011.2193.2199 CrossRefGoogle Scholar
  3. 3.
    Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002). doi: 10.1023/A:1016328200723 CrossRefMATHGoogle Scholar
  4. 4.
    Hautière, N., Tarel, J.-P., Lavenant, J., Aubert, D.: Automatic fog detection and estimation of the visibility distance through use of an onboard camera. Mach. Vis. Appl. 17(1), 8–20 (2006). doi: 10.1007/s00138-005-0011-1 CrossRefGoogle Scholar
  5. 5.
    Liu, C., Lu, X., Ji, S., Geng, W.: A fog level detection method based on image HSV color histogram. In: International Conference on IEEE Progress in Informatics and Computing (PIC), pp. 373–377 (2014). doi: 10.1109/PIC.2014.6972360

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Olatz Iparraguirre Gil
    • 1
  • Borja Nuñez Barrionuevo
    • 1
  • Joshua Puerta Prieto
    • 1
  • Luis Matey Muñoz
    • 1
  • Irantzu Bores
    • 2
  • Alfonso Brazalez Guerra
    • 1
  1. 1.Ceit-IK4Donostia - San SebastiánSpain
  2. 2.GertekBilbaoSpain

Personalised recommendations