Advertisement

Data Ingestion and Storage Performance of IoT Platforms: Study of OpenIoT

  • Alexey Medvedev
  • Alireza Hassani
  • Arkady Zaslavsky
  • Prem Prakash Jayaraman
  • Maria Indrawan-Santiago
  • Pari Delir Haghighi
  • Sea Ling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10218)

Abstract

Internet of Things is a very active research area with great commercialisation potential. The number of IoT platforms is already exceeding 300 and still growing. However, performance evaluation and benchmarking of IoT platforms are still in their infancy. As a step towards developing a performance benchmarking approach for IoT platforms, this paper analyses and compares a number of popular IoT platforms from data ingestion and storage capability perspectives. In order to test the proposed approach, we use the widely used open source IoT platform, OpenIoT. The results of the experiments and the lessons learnt are presented and discussed. While having a great research promise and pioneering contribution to semantic interoperability of IoT silos, the experimental results indicate OpenIoT platform needs more development effort to be ready for any substantial deployment in commercial IoT applications.

Keywords

Internet of Things (IoT) Platform Data management Storage Ingestion Evaluation Benchmarking 

Notes

Acknowledgement

Part of this work has been carried out in the scope of the project bIoTope which is co-funded by the European Commission under Horizon-2020 program, contract number H2020-ICT-2015/688203 – bIoTope. The research has been carried out with the financial support of the Ministry of Education and Science of the Russian Federation under grant agreement RFMEFI58716X0031.

References

  1. 1.
    Velosa, A., Natis, Y.V., Pezzini, M., Lheureux, B.J., Goodness, E.: Gartner’s Market Guide for IoT Platforms (2015)Google Scholar
  2. 2.
    Vandikas, K., Tsiatsis, V.: Performance evaluation of an IoT platform. In: 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, pp. 141–146. IEEE (2014)Google Scholar
  3. 3.
    Predix developer network, services and software. https://www.predix.io/catalog/services/
  4. 4.
  5. 5.
    Tibbo Aggregate IoT Integration platform. http://aggregate.tibbo.com/
  6. 6.
    AggreGate Performance and Scalability Facts. http://aggregate.tibbo.com/technology/architecture/performance.html
  7. 7.
    ThingWorx IoT Technology Platform. https://www.thingworx.com/platforms/
  8. 8.
  9. 9.
  10. 10.
    Foster, A.: Enhanced data storage capabilities for IBM Watson IoT Platform. https://developer.ibm.com/iotplatform/2016/07/25/enhanced-data-storage-capabilities-for-ibm-watson-iot-platform/
  11. 11.
    Moltchanov, B., Rocha, O.R.: Generic enablers concept and two implementations for European future internet test-bed. In: 2014 International Conference on Computing, Management and Telecommunications (ComManTel), pp. 304–308. IEEE (2014)Google Scholar
  12. 12.
    Ramparany, F., Marquez, F.G., Soriano, J., Elsaleh, T.: Handling smart environment devices, data and services at the semantic level with the FI-WARE core platform. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 14–20. IEEE (2014)Google Scholar
  13. 13.
  14. 14.
    Serrano, M., Quoc, H.N.M., Le Phuoc, D., Hauswirth, M., Soldatos, J., Kefalakis, N., Jayaraman, P.P., Zaslavsky, A.: Defining the stack for service delivery models and interoperability in the internet of things: a practical case with OpenIoT-VDK. IEEE J. Sel. Areas Commun. 33, 676–689 (2015)CrossRefGoogle Scholar
  15. 15.
    Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deployment. In: Proceedings of 32nd International Conference on Very Large Data Bases, pp. 1199–1202 (2006)Google Scholar
  16. 16.
    Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents World Wide Web 16, 42–51 (2012)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Transaction Processing Performance Council. http://www.tpc.org/
  19. 19.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing - SoCC 2010, p. 143. ACM Press, New York (2010)Google Scholar
  20. 20.
    Yahoo! Cloud Serving Benchmark (YCSB) github page. https://github.com/brianfrankcooper/YCSB/wiki
  21. 21.
  22. 22.
  23. 23.
    Bizer, C., Schultz, A., Pan, Z., Heflin, J.: Berlin SPARQL Benchmark (BSBM) Specification - V3.1. http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/index.html
  24. 24.
  25. 25.
    Nambiar, R.: Benchmarking internet of things (CISCO). http://blogs.cisco.com/datacenter/industry-standards-for-benchmarking-iot
  26. 26.
    PROBE-IT benchmarking framework. http://www.probe-it.eu/?page_id=1036
  27. 27.
    Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: IoTAbench. In: Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering - ICPE 2015, pp. 133–144. ACM Press, New York (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexey Medvedev
    • 1
  • Alireza Hassani
    • 1
  • Arkady Zaslavsky
    • 2
    • 3
  • Prem Prakash Jayaraman
    • 4
  • Maria Indrawan-Santiago
    • 1
  • Pari Delir Haghighi
    • 1
  • Sea Ling
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  2. 2.CSIROData61MelbourneAustralia
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Swinburne University of TechnologyMelbourneAustralia

Personalised recommendations