A Sensor Observation Service Extension for Internet of Things

  • Argyrios Samourkasidis
  • Ioannis N. Athanasiadis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10218)


This work contributes towards extending OGC Sensor Observation Service to become ready for Internet of Things, i.e. can be employed by devices with limited capabilities or opportunistic internet connection. We present an extension based on progressive data transmission, which by-design facilitates selective data harvesting and disruption-tolerant communication. The extension economizes resources, while respects the SOS specification requirement that the client should have no a-priori knowledge of the server capabilities. Empirical experiments in two case studies demonstrate that the extension adds little overhead and may lead to significant performance improvements in certain cases, as for irregular timeseries. Also, the proposed extension is not invasive and backwards compatible with legacy clients.


Open Geospatial Consortium Sensor Observation Service Internet of Things Syntactic interoperability SOS 2.0 Sensor Web Progressive transmission Pagination Timeseries data 



This work was partially supported by Greek General Secretariat for Research and Technology, grant 11SYN-6-411 (ALPINE), and the European Community’s Seventh Framework Programme grant 613817 (MODEXTREME). Authors are grateful to the four anonymous reviewers for their valuable feedback and the participants of the InterOSS-IoT Workshop (Stuttgart, Nov. 7th, 2016) for their comments.


  1. 1.
    Alamdar, F., Kalantari, M., Rajabifard, A.: Towards multi-agency sensor information integration for disaster management. Comput. Environ. Urban Syst. 56, 68–85 (2016). CrossRefGoogle Scholar
  2. 2.
    de Assis, L.F.F.G., Behnck, L.P., Doering, D., de Freitas, E.P., Pereira, C.E., Horita, F.E.A., Ueyama, J., de Albuquerque, J.P.: Dynamic sensor management: extending sensor web for near real-time mobile sensor integration in dynamic scenarios. In: Proceedings of International IEEE Advanced Information Networking and Applications (AINA), pp. 303–310, March 2016.
  3. 3.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010). CrossRefzbMATHGoogle Scholar
  4. 4.
    Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and Internet of Things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016). CrossRefGoogle Scholar
  5. 5.
    Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC\(\textregistered \) sensor web enablement: overview and high level architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-79996-2_10 CrossRefGoogle Scholar
  6. 6.
    Broering, A., Remke, A., Stasch, C., Autermann, C., Rieke, M., Möllers, J.: enviroCar: a citizen science platform for analyzing and mapping crowd-sourced car sensor data. Trans. GIS 19(3), 362–376 (2015). CrossRefGoogle Scholar
  7. 7.
    Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., Lemmens, R.: New generation sensor web enablement. Sensors 11(3), 2652–2699 (2011). CrossRefGoogle Scholar
  8. 8.
    Bröring, A., Janowicz, K., Stasch, C., Schade, S., Everding, T., Llaves, A.: Demonstration: a RESTful SOS proxy for linked sensor data. In: Proceedings of 4th International Workshop on Semantic Sensor Networks (SSN11), pp. 123–126 (2011)Google Scholar
  9. 9.
    Center for operational oceanographic products and services (co-ops) sensor observation service (2017). Accessed 22 Jan 2017
  10. 10.
    Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6(2), 86 (2002). CrossRefGoogle Scholar
  11. 11.
    Drosatos, G., Efraimidis, P., Athanasiadis, I., Stevens, M., D’Hondt, E.: Privacy-preserving computation of participatory noise maps in the cloud. J. Syst. Softw. 92, 170–183 (2014). CrossRefGoogle Scholar
  12. 12.
    Fredericks, J.J., Botts, M., Cook, T., Bosch, J.: Integrating standards in data QA/QC into OpenGeospatial consortium sensor observation services. In: Proceedings of OCEANS 2009-EUROPE, pp. 1–6, May 2009.
  13. 13.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007). CrossRefGoogle Scholar
  14. 14.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015). CrossRefGoogle Scholar
  15. 15.
    Havlik, D., Bleier, T., Schimak, G.: Sharing sensor data with SensorSA and cascading sensor observation service. Sensors 9(7), 5493–5502 (2009). CrossRefGoogle Scholar
  16. 16.
    Horita, F.E., de Albuquerque, J.P., Degrossi, L.C., Mendiondo, E.M., Ueyama, J.: Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks. Comput. Geosci. 80, 84–94 (2015). CrossRefGoogle Scholar
  17. 17.
    Janowicz, K., Bröring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.: A RESTful proxy and data model for linked sensor data. Int. J. Digit. Earth 6(3), 233–254 (2013). CrossRefGoogle Scholar
  18. 18.
    Jazayeri, M.A., Liang, S.H., Huang, C.Y.: Implementation and evaluation of four interoperable open standards for the Internet of Things. Sensors 15(9), 24343–24373 (2015). CrossRefGoogle Scholar
  19. 19.
    Jirka, S., Bröring, A., Kjeld, P., Maidens, J., Wytzisk, A.: A lightweight approach for the Sensor Observation Service to share environmental data across Europe. Trans. GIS 16(3), 293–312 (2012). CrossRefGoogle Scholar
  20. 20.
    Lagoze, C., Van de Sompel, H.: The open archives initiative: building a low-barrier interoperability framework. In: Proceedings of 1st ACM/IEEE-CS Joint Conference on Digital libraries, JCDL 2001, pp. 54–62. ACM, New York (2001).
  21. 21.
    Li, S., Da Xu, L., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17(2), 243–259 (2015). CrossRefGoogle Scholar
  22. 22.
    Mulligan, G., Gracanin, D.: A comparison of SOAP and REST implementations of a service based interaction independence middleware framework. In: Proceedings of Winter Simulation Conference (WSC), pp. 1423–1432, December 2009.
  23. 23.
    Observations and Measurements - XML implementation. Implementation Standard 10–025r1, Open Geospatial Consortium (2011)Google Scholar
  24. 24.
    OGC Sensor Observation Service 2.0. Implementation Standard 12–006, Open Geospatial Consortium (2012)Google Scholar
  25. 25.
    OGC Sensor Observation Service 1.0. Standard 06–009r6, Open Geospatial Consortium (2007)Google Scholar
  26. 26.
    OGC Sensor Observation Service 2.0 Hydrology Profile. Best Practice Paper 14–004r1, Open Geospatial Consortium (2014)Google Scholar
  27. 27.
    SensorML, O.G.C.: Model and XML. Encoding Standard 12–000, Open Geospatial Consortium (2014)Google Scholar
  28. 28.
    OGC SensorThings API Part 1: Sensing. Implementation Standard 15–078r6, Open Geospatial Consortium (2016)Google Scholar
  29. 29.
    OGC Web Feature Service 2.0. Interface Standard 09–025r2, Open Geospatial Consortium (2014)Google Scholar
  30. 30.
    Papazoglou, M., Georgakopoulos, D.: Service-oriented computing. Commun. ACM 46(10), 25 (2003). CrossRefGoogle Scholar
  31. 31.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for smart cities supported by Internet of Things. Trans. Emerg. Telecommun. Technol. 25(1), 81–93 (2014). CrossRefGoogle Scholar
  32. 32.
    Pradilla, J., Palau, C., Esteve, M.: SOSLITE: lightweight Sensor Observation Service (SOS) for the Internet of Things (IoT). In: ITU Kaleidoscope: Trust in the Information Society (K-2015), pp. 1–7. IEEE, December 2015.
  33. 33.
    Regueiro, M.A., Viqueira, J.R., Taboada, J.A., Cotos, J.M.: Virtual integration of sensor observation data. Comput. Geosci. 81, 12–19 (2015). CrossRefGoogle Scholar
  34. 34.
    Reitz, K.: Requests: HTTP for humans (2017). Accessed 22 Jan 2017
  35. 35.
    Rouached, M., Baccar, S., Abid, M.: RESTful sensor web enablement services for wireless sensor networks. In: IEEE Eighth World Congress on Services, pp. 65–72. IEEE, June 2012.
  36. 36.
    Samourkasidis, A., Athanasiadis, I.N.: A miniature data repository on a Raspberry Pi. Electronics 6(1) (2017).
  37. 37.
    The Python standard library: random - Generate pseudo-random numbers. (2017). Accessed 22 Jan 2017
  38. 38.
    The Python standard library: time - time access and conversions (2017). Accessed 22 Jan 2017.
  39. 39.
    Yazar, D., Dunkels, A.: Efficient application integration in IP-based Sensor networks. In: Proceedings of 1st ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys 2009, pp. 43–48. ACM, New York (2009).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Argyrios Samourkasidis
    • 1
  • Ioannis N. Athanasiadis
    • 1
  1. 1.Information Technology GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations