Advertisement

Semantic Interoperability as Key to IoT Platform Federation

  • Michael Jacoby
  • Aleksandar Antonić
  • Karl Kreiner
  • Roman Łapacz
  • Jasmin Pielorz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10218)

Abstract

Semantic interoperability is the key technology to enable evolution of the Internet of Things (IoT) from its current state of independent vertical IoT silos to interconnected IoT platform federations. This paper analyzes the possible solution space on how to achieve semantic interoperability and presents five possible approaches in detail together with a discussion on implementation issues. It presents the H2020 symbIoTe project as an example on how semantic interoperability can be achieved using semantic mapping and SPARQL query re-writing. We conclude that the found approaches together with the proposed technologies have the potential to act as corner stone technologies for achieving semantic interoperability.

Keywords

Semantic interoperability Internet of Things IoT platform federation Semantic mapping SymbIoTe SPARQL query re-writing 

Notes

Acknowledgement

This work is supported by the H2020 symbIoTe project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688156. The authors would like to cordially thank the entire symbIoTe consortium for their valuable comments and discussions.

References

  1. 1.
    Merriam-webster dictionary. http://www.merriam-webster.com/dictionary/semantics. Accessed 23 Oct 2016
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  3. 3.
    Bouquet, P., Giunchiglia, F., Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39718-2_11 CrossRefGoogle Scholar
  4. 4.
    Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. ACM Sigmod Rec. 35(3), 34–41 (2006)CrossRefGoogle Scholar
  5. 5.
    Compton, M., Barnaghi, P., Bermudez, L., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Seman. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  6. 6.
    Correndo, G., Shadbolt, N.: Translating expressive ontology mappings into rewriting rules to implement query rewriting. In: International Semantic Web Conference, Ontology Matching Workshop. CEUR-WS (2011)Google Scholar
  7. 7.
    David, J., Euzenat, J., Scharffe, F.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)Google Scholar
  8. 8.
    European Commission: Reaping the full benefits of a digital single market. Comission Staff Working Document (2016)Google Scholar
  9. 9.
    Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30475-3_48 CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Scharffe, F., Zimmermann, A.: Expressive alignment language and implementation. Knowledge Web project report, KWEB/2004/D2.2.10/1.0 (2007)Google Scholar
  11. 11.
    Gruber, T.R., et al.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  12. 12.
    Herzog, R., Jacoby, M., Podnar Žarko, I.: Semantic interoperability in IoT-based automation infrastructures. AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology (2015)Google Scholar
  13. 13.
    Horrocks, I., Patel-Schneider, P.F., et al.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21, 79 (2004)Google Scholar
  14. 14.
    Ide, N., Pustejovsky, J.: What does interoperability mean, anyway? toward an operational definition of interoperability for language technology. In: Proceedings of the Second International Conference on Global Interoperability for Language Resources, Hong Kong, China (2010)Google Scholar
  15. 15.
    Klein, M.: Combining and relating ontologies: an analysis of problems and solutions. In: IJCAI-2001 Workshop on Ontologies and Information Sharing, USA, pp. 53–62 (2001)Google Scholar
  16. 16.
    Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA — a mapping framework for distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002). doi: 10.1007/3-540-45810-7_23 CrossRefGoogle Scholar
  17. 17.
    McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. W3C Recommendation 10(10), 2004 (2004)Google Scholar
  18. 18.
    Network-Centric Operations Industry Consortium: Systems, capabilities, operations, programs, and enterprises (scope) model for interoperability assessmentGoogle Scholar
  19. 19.
    oneM2M Partners: oneM2M base ontology. Technical report TS-0012-V2.0.0, oneM2M Partners, August 2016Google Scholar
  20. 20.
    Rebstock, M., Janina, F., Paulheim, H.: Ontologies-based business integration. Springer Science & Business Media (2008)Google Scholar
  21. 21.
    Scharffe, F.: Correspondence patterns representation. Ph.D. thesis, University of Innsbruck (2009)Google Scholar
  22. 22.
    Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl. Inf. Syst. 40(1), 1–28 (2014)CrossRefGoogle Scholar
  23. 23.
    Soursos, S., Žarko, I.P., Zwickl, P., Gojmerac, I., Bianchi, G., Carrozzo, G.: Towards the cross-domain interoperability of IoT platforms. In: 2016 European Conference on Networks and Communications (2016)Google Scholar
  24. 24.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    Tolk, A., Wang, W., Wang, W.: The levels of conceptual interoperability model: applying systems engineering principles to M&S. In: Proceedings of the 2009 Spring Simulation Multiconference, p. 168 (2009)Google Scholar
  26. 26.
    Visser, P.R., Jones, D.M., Bench-Capon, T.J., Shave, M.J.: Assessing heterogeneity by classifying ontology mismatches. In: Proceedings of the FOIS, vol. 98 (1998)Google Scholar
  27. 27.
    Visser, P.R., Jones, D.M., Bench-Capon, T.J., Shave, M.: An analysis of ontology mismatches; heterogeneity versus interoperability. In: AAAI 1997 Spring Symposium on Ontological Engineering, Stanford CA, USA, pp. 164–172 (1997)Google Scholar
  28. 28.
    Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology-based integration of information-a survey of existing approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, vol. 2001, pp. 108–117. Citeseer (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Jacoby
    • 1
  • Aleksandar Antonić
    • 2
  • Karl Kreiner
    • 3
  • Roman Łapacz
    • 4
  • Jasmin Pielorz
    • 3
  1. 1.Fraunhofer IOSBKarlsruheGermany
  2. 2.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  3. 3.Austrian Institute of Technology (AIT)ViennaAustria
  4. 4.Poznan Supercomputing and Networking CenterPoznanPoland

Personalised recommendations