Advertisement

SEM: A Global Technique—Case Applied to TPM

  • Valeria Martínez-LoyaEmail author
  • José Roberto Díaz-Reza
  • Jorge Luis García-Alcaraz
  • Jessica Yanira Tapia-Coronado
Chapter
Part of the Management and Industrial Engineering book series (MINEN)

Abstract

Nowadays, structural equation modeling (SEM) has become a technique used worldwide. Its versatility and the way how it links different variables have allowed its application in a great number of studies of different areas (social sciences, medicine, engineering, etc.). Due to the impact of SEM, throughout this chapter, a number of concepts will be presented for a broader understanding of this technique. In addition, a literature review is presented for the main applications of SEM. Finally, it is presented a practical case of application in the maquiladora industry of Ciudad Juárez, where this technique plays an important role.

Keywords

SEM Structural equation modeling TPM 

References

  1. Ahuja IPS, Khamba JS (2008) Total productive maintenance: literature review and directions. Int J Qual Reliab Manage 25(7):709–756. doi: 10.1108/02656710810890890 CrossRefGoogle Scholar
  2. Arrogante O, Pérez-García AM, Aparicio-Zaldívar EG (2016) A propósito de los modelos de ecuaciones estructurales y la evaluación de los índices de ajuste. Enfermería Intensiva 27(2):85–86. doi: 10.1016/j.enfi.2016.03.004 CrossRefGoogle Scholar
  3. Attri R, Grover S, Dev N, Kumar D (2013) Analysis of barriers of total productive maintenance (TPM). Int J Syst Assurance Eng Manage 4(4):365–377. doi: 10.1007/s13198-012-0122-9 CrossRefGoogle Scholar
  4. Becker SW (1993) TQM does work: ten reasons why misguided efforts fail. Manage Rev 82(5):5Google Scholar
  5. Byrne BM (2013) Structural equation modeling with AMOS: basic concepts, applications, and programming, Second Edition. Multivariate applications series. Taylor & Francis, UKGoogle Scholar
  6. Cooke FL (2000) Implementing TPM in plant maintenance: some organisational barriers. Int J Qual Reliab Manage 17(9):1003–1016. doi: 10.1108/02656710010378789 CrossRefGoogle Scholar
  7. Crawford KM, Blackstone JH, Cox JF (1988) A study of JIT implementation and operating problems. Int J Prod Res 26(9):1561–1568. doi: 10.1080/00207548808947966 CrossRefGoogle Scholar
  8. Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16(3):8CrossRefGoogle Scholar
  9. Chan FTS, Lau HCW, Ip RWL, Chan HK, Kong S (2005) Implementation of total productive maintenance: a case study. Int J Prod Econ 95(1):71–94. doi: 10.1016/j.ijpe.2003.10.021 CrossRefGoogle Scholar
  10. Dal B, Tugwell P, Greatbanks R (2000) Overall equipment effectiveness as a measure of operational improvement—a practical analysis. Int J Oper Prod Manage 20(12):1488–1502. doi: 10.1108/01443570010355750 CrossRefGoogle Scholar
  11. Eti MC, Ogaji SOT, Probert SD (2004) Implementing total productive maintenance in Nigerian manufacturing industries. Appl Energy 79(4):385–401. doi: 10.1016/j.apenergy.2004.01.007 CrossRefGoogle Scholar
  12. García-Alcaraz JL, Díaz-Reza R, Hernández-Arellano JL, Cortes-Robles G (2014) The application of structural equation models in industry: tendencies. Int J Manage Sci 4(10):429–444Google Scholar
  13. Garcia-Alcaraz JL, Maldonado-Macías AA (2016) Just-in-Time Elements and Benefits. Springer. doi: 10.1007/978-3-319-25919-2 Google Scholar
  14. Hair JF, Hult GTM, Ringle C, Sarstedt M (2014) A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, USAGoogle Scholar
  15. Hair Jr JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis, vol Seventh Edition. Prentice Hall, New JerseyGoogle Scholar
  16. Henseler J, Sarstedt M (2013) Goodness-of-fit indices for partial least squares path modeling. Comput Stat 28(2):565–580. doi: 10.1007/s00180-012-0317-1 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hox JJ, Moerbeek M, van de Schoot R (2010) Multilevel analysis: techniques and applications, Quantitative methodology series, 2nd edn. Taylor & Francis, UKGoogle Scholar
  18. Kock N (2015) WarpPLS 5.0 user manual. Texas, USAGoogle Scholar
  19. Lee SY, Song XY (2010) Structural equation models A2—Peterson, Penelope. In: Baker E, McGaw B (eds) International encyclopedia of education (Third Edition). Elsevier, Oxford, pp 453–458. doi: 10.1016/B978-0-08-044894-7.01370-1
  20. McAdam R, McGeough F (2000) Implementing total productive maintenance in multi-union manufacturing organizations: Overcoming job demarcation. Total Qual Manag 11(2):187–197. doi: 10.1080/0954412006928 CrossRefGoogle Scholar
  21. Nakajima S (1988) Introduction to TPM: total productive maintenance. Productivity Press, Portland, ORGoogle Scholar
  22. Ng KC, Chong KE, Goh GGG (2013) Total productive maintenance strategy in a semiconductor manufacturer: a case study In: IEEE Proceedings of the 2013 IEEE IEEM, 10–13 Dec 2013Google Scholar
  23. Rahman CML (2015) Assessment of total productive maintenance implementation in a semiautomated manufacturing company through downtime and mean downtime analysis. In: Industrial engineering and operations management (IEOM), 2015 international conference on, 3–5 Mar 201. pp 1–9. doi: 10.1109/IEOM.2015.7093762
  24. Raykov T, Marcoulides GA (2012) A first course in structural equation modeling. Taylor & Francis, UKGoogle Scholar
  25. Ruiz MA, Pardo A, San Martín R (2010) Modelos de ecuaciones estructurales. Papeles del psicólogo 31(1):34–45Google Scholar
  26. Santibáñez-Andrade G, Castillo-Argüero S, Vega-Peña EV, Lindig-Cisneros R, Zavala-Hurtado JA (2015) Structural equation modeling as a tool to develop conservation strategies using environmental indicators: the case of the forests of the Magdalena river basin in Mexico City. Ecol Ind 54:124–136. doi: 10.1016/j.ecolind.2015.02.022 CrossRefGoogle Scholar
  27. Sarstedt M, Ringle CM, Smith D, Reams R, Hair JF Jr (2014) Partial least squares structural equation modeling (PLS-SEM): a useful tool for family business researchers. J Family Bus Strategy 5(1):105–115. doi: 10.1016/j.jfbs.2014.01.002 CrossRefGoogle Scholar
  28. Schreiber JB, Nora A, Stage FK, Barlow EA, King J (2006) Reporting structural equation modeling and confirmatory factor analysis results: a review. J Educ Res 99(6):323–338. doi: 10.3200/JOER.99.6.323-338 CrossRefGoogle Scholar
  29. Schumacker RE, Lomax RG (2016) A Beginner’s guide to structural equation modeling: Fourth edition. Taylor & Francis, UKGoogle Scholar
  30. Shah R, Ward PT (2003) Lean manufacturing: context, practice bundles, and performance. J Oper Manage 21(2):129–149. doi: 10.1016/S0272-6963(02)00108-0 CrossRefGoogle Scholar
  31. Smith R, Hawkins B (2004) 3—Total productive maintenance (TPM). In: Lean maintenance. Butterworth-Heinemann, Burlington, pp 55–104. doi: 10.1016/B978-075067779-0/50003-0
  32. Tenenhaus M, Vinzi VE, Chatelin Y-M, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205. doi: 10.1016/j.csda.2004.03.005 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Ullman J (2006) Structural equation modeling: reviewing the basics and moving forward. J Pers Assess 87(1):35–50CrossRefGoogle Scholar
  34. Wickramasinghe G, Perera A (2016) Effect of total productive maintenance practices on manufacturing performance: investigation of textile and apparel manufacturing firms. J Manuf Technol Manage 27(5):713–729. doi: 10.1108/JMTM-09-2015-0074 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Valeria Martínez-Loya
    • 1
    Email author
  • José Roberto Díaz-Reza
    • 2
  • Jorge Luis García-Alcaraz
    • 1
  • Jessica Yanira Tapia-Coronado
    • 1
  1. 1.Department of Industrial Engineering and ManufacturingUniversidad Autónoma de Ciudad JuárezJuárez, ChihuahuaMexico
  2. 2.Department of Electric Engineering and ComputationUniversidad Autónoma de Ciudad JuárezJuárez, ChihuahuaMexico

Personalised recommendations