Skip to main content

Which Performance Parameters Are Best Suited to Assess the Predictive Ability of Models?

  • Chapter
  • First Online:
Advances in QSAR Modeling

Abstract

We have revisited the vivid discussion in the QSAR-related literature concerning the use of external versus cross-validation , and have presented a thorough statistical comparison of model performance parameters with the recently published SRD (sum of (absolute) ranking differences) method and analysis of variance (ANOVA) . Two case studies were investigated, one of which has exclusively used external performance merits. The SRD methodology coupled with ANOVA shows unambiguously for both case studies that the performance merits are significantly different, independently from data preprocessing . While external merits are generally less consistent (farther from the reference) than training and cross-validation based merits, a clear ordering and a grouping pattern of them could be acquired. The results presented here corroborate our earlier, recently published findings (SAR QSAR Environ. Res., 2015, 26, 683–700) that external validation is not necessarily a wise choice, and is frequently comparable to a random evaluation of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrić, F., Bajusz, D., Rácz, A., et al. (2016). Multivariate assessment of lipophilicity scales—Computational and reversed phase thin-layer chromatographic indices. Journal of Pharmaceutical and Biomedical Analysis, 127, 81–93. doi:10.1016/j.jpba.2016.04.001.

    Article  Google Scholar 

  • Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics, 7, 20. doi:10.1186/s13321-015-0069-3.

    Article  Google Scholar 

  • Chirico, N., & Gramatica, P. (2011). Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. Journal of Chemical Information and Modeling, 51, 2320–2335. doi:10.1021/ci200211n.

    Article  CAS  Google Scholar 

  • Consonni, V., Ballabio, D., & Todeschini, R. (2010). Evaluation of model predictive ability by external validation techniques. Journal of Chemometrics, 24, 194–201. doi:10.1002/cem.1290.

    Article  CAS  Google Scholar 

  • Esbensen, K. H., & Geladi, P. (2010). Principles of proper validation: Use and abuse of re-sampling for validation. Journal of Chemometrics, 24, 168–187. doi:10.1002/cem.1310.

    Article  CAS  Google Scholar 

  • Gramatica, P. (2014). External evaluation of QSAR models, in addition to cross-validation: Verification of predictive capability on totally new chemicals. Molecular Informatics, 33, 311–314. doi:10.1002/minf.201400030.

    Article  CAS  Google Scholar 

  • Gramatica, P., Cassani, S., Roy, P. P., et al. (2012). QSAR Modeling is not “push a button and find a correlation”: A case study of toxicity of (Benzo-)triazoles on Algae. Molecular Informatics, 31, 817–835. doi:10.1002/minf.201200075.

    Article  CAS  Google Scholar 

  • Gramatica, P., Chirico, N., Papa, E., et al. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 34, 2121–2132. doi:10.1002/jcc.23361.

    Article  CAS  Google Scholar 

  • Gütlein, M., Helma, C., Karwath, A., & Kramer, S. (2013). A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR. Molecular Informatics, 32, 516–528. doi:10.1002/minf.201200134.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). Cross-Validation. The elements of statistical learning: Data mining, inference, and prediction (2nd ed., pp. 241–249). New York: Springer.

    Chapter  Google Scholar 

  • Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information and Computer Sciences, 44, 1–12. doi:10.1021/ci0342472.

    Article  CAS  Google Scholar 

  • Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of Chemical Information and Computer Sciences, 43, 579–586. doi:10.1021/ci025626i.

    Article  CAS  Google Scholar 

  • Héberger, K. (2010). Sum of ranking differences compares methods or models fairly. TrAC Trends in Analytical Chemistry, 29, 101–109.

    Article  Google Scholar 

  • Héberger, K., Kolarević, S., Kračun-Kolarević, M., et al. (2014). Evaluation of single-cell gel electrophoresis data: Combination of variance analysis with sum of ranking differences. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 771, 15–22. doi:10.1016/j.mrgentox.2014.04.028.

    Article  Google Scholar 

  • Kollár-Hunek, K., & Héberger, K. (2013). Method and model comparison by sum of ranking differences in cases of repeated observations (ties). Chemometrics and Intelligent Laboratory Systems, 127, 139–146. doi:10.1016/j.chemolab.2013.06.007.

    Article  Google Scholar 

  • Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.

    Article  CAS  Google Scholar 

  • Lin, L. I.-K. (1992). Assay validation using the concordance correlation coefficient. Biometrics, 48, 599. doi:10.2307/2532314.

    Article  Google Scholar 

  • Lindman, H. R. (1991). Analysis of variance in experimental design. New York: Springer.

    Google Scholar 

  • Miller, A. (1990). Subset selection in regression. London: Chapman and Hall.

    Book  Google Scholar 

  • Rácz, A., Bajusz, D., & Héberger, K. (2015). Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters. SAR and QSAR in Environmental Research, 26, 683–700. doi:10.1080/1062936X.2015.1084647.

    Article  Google Scholar 

  • Roy, K., Das, R. N., Ambure, P., & Aher, R. B. (2016). Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometrics and Intelligent Laboratory Systems, 152, 18–33. doi:10.1016/j.chemolab.2016.01.008.

    Article  CAS  Google Scholar 

  • Schüürmann, G., Ebert, R.-U., Chen, J., et al. (2008). External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. Journal of Chemical Information and Modeling, 48, 2140–2145. doi:10.1021/ci800253u.

    Article  Google Scholar 

  • Shi, L. M., Fang, H., Tong, W., et al. (2001). QSAR models using a large diverse set of estrogens. Journal of Chemical Information and Modeling, 41, 186–195. doi:10.1021/ci000066d.

    CAS  Google Scholar 

  • Silla, J. M., Nunes, C. A., Cormanich, R. A., et al. (2011). MIA-QSPR and effect of variable selection on the modeling of kinetic parameters related to activities of modified peptides against dengue type 2. Chemometrics and Intelligent Laboratory Systems, 108, 146–149. doi:10.1016/j.chemolab.2011.06.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the Hungarian Scientific Research Fund (OTKA, grant number K 119269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Héberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Héberger, K., Rácz, A., Bajusz, D. (2017). Which Performance Parameters Are Best Suited to Assess the Predictive Ability of Models?. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_3

Download citation

Publish with us

Policies and ethics