Advertisement

Heuristic for Maximizing Grouping Efficiency in the Cell Formation Problem

  • Ilya BychkovEmail author
  • Mikhail Batsyn
  • Panos M. Pardalos
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 197)

Abstract

In our paper, we consider the Cell Formation Problem in Group Technology with grouping efficiency as an objective function. We present a heuristic approach for obtaining high-quality solutions of the CFP. The suggested heuristic applies an improvement procedure to obtain solutions with high grouping efficiency. This procedure is repeated many times for randomly generated cell configurations. Our computational experiments are performed for popular benchmark instances taken from the literature with sizes from 10\(\,\times \,\)20 to 50\(\,\times \,\)150. Better solutions unknown before are found for 23 instances of the 24 considered. The preliminary results for this paper are available in Bychkov et al. (Models, algorithms, and technologies for network analysis, Springer, NY, vol. 59, pp. 43–69, 2013, [7]).

Notes

Acknowledgements

This work was conducted at the Laboratory of Algorithms and Technologies for Network Analysis of National Research University Higher School of Economics and partly supported by RSF 14-41-00039 grant.

References

  1. 1.
    Ahi, A., Mir, B., Aryanezhad, B., Ashtiani, A.M.: A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method. Comput. Oper. Res. 36(5), 1478–1496 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Askin, R.G., Chiu, K.S.: A graph partitioning procedure for machine assignment and cell formation in group technology. Int. J. Prod. Res. 28(8), 1555–1572 (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bhatnagar, R., Saddikuti, V.: Models for cellular manufacturing systems design: matching processing requirements and operator capabilities. J. Opl. Res. Soc. 61, 827–839 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boe, W., Cheng, C.H.: A close neighbor algorithm for designing cellular manufacturing systems. Int. J. Prod. Res. 29(10), 2097–2116 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Burbidge, J.L.: The new approach to production. Prod. Eng. (1961). (Dec. 3–19)Google Scholar
  6. 6.
    Burbidge, J.L.: The Introduction of Group Technology. Wiley, New York (1975)Google Scholar
  7. 7.
    Bychkov, I., Batsyn, M., Sukhov, P.: Ch. 4., Heuristic algorithm for the cell formation problem. In: Goldengorin, B.I., Kalyagin, V.A., Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for Network Analysis, vol. 59, pp. 43–69. Springer, NY (2013)Google Scholar
  8. 8.
    Carrie, S.: Numerical taxonomy applied to group technology and plant layout. Int. J. Prod. Res. 11, 399–416 (1973)CrossRefGoogle Scholar
  9. 9.
    Chandrasekaran, M.P., Rajagopalan, R.: MODROC: an extension of rank order clustering of group technology. Int. J. Prod. Res. 24(5), 1221–1233 (1986)CrossRefGoogle Scholar
  10. 10.
    Chandrasekharan, M.P., Rajagopalan, R.: ZODIAC–an algorithm for concurrent formation of part families and machine cells. Int. J. Prod. Res. 25(6), 835–850 (1987)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chandrasekharan, M.P., Rajagopalan, R.: Groupability: analysis of the properties of binary data matrices for group technology. Int. J. Prod. Res. 27(6), 1035–1052 (1989)CrossRefGoogle Scholar
  12. 12.
    Chan, H.M., Milner, D.A.: Direct clustering algorithm for group formation in cellular manufacture. J. Manuf. Syst. 1(1), 64–76 (1982)CrossRefGoogle Scholar
  13. 13.
    Cheng, C.H., Gupta, Y.P., Lee, W.H., Wong, K.F.: A TSP-based heuristic for forming machine groups and part families. Int. J. Prod. Res. 36(5), 1325–1337 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Elbenani, B., Ferland, J.A.: Manufacturing Cell Formation by State-Space Search, pp. 14. Montreal, Quebec. CIRRELT-2012-07 (2012)Google Scholar
  15. 15.
    Flanders, R.E.: Design manufacture and production control of a standard machine. Trans. ASME 46, 691–738 (1925)Google Scholar
  16. 16.
    Ghosh, S., Mahanti, A., Nagi, R., Nau, D.S.: Cell formation problem solved exactly with the dinkelbach algorithm. Ann. Oper. Res. 65(1), 35–54 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Goldengorin, B., Krushinsky, D., Slomp, J.: Flexible PMP approach for large size cell formation. Oper. Res. 60(5), 1157–1166 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goncalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47, 247–273 (2004)CrossRefGoogle Scholar
  19. 19.
    Hsu, C.P.: Similarity coefficient approaches to machine-component cell formation in cellular manufacturing: a comparative study. Ph.D. Thesis, Department of Industrial and Manufacturing Engineering, University of Wisconsin Milwaukee (1990)Google Scholar
  20. 20.
    King, J.R.: Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. Int. J. Prod. Res. 18(2), 213–232 (1980)CrossRefGoogle Scholar
  21. 21.
    King, J.R., Nakornchai, V.: Machine-component group formation in group technology: review and extension. Int. J. Prod. Res. 20(2), 117–133 (1982)CrossRefGoogle Scholar
  22. 22.
    Krushinsky, D., Goldengorin, B.: An exact model for cell formation in group technology. CMS 9, 323–338 (2012). doi: 10.1007/s10287-012-0146-2 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kumar, K.R., Chandrasekharan, M.P.: Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. Int. J. Prod. Res. 28(2), 233–243 (1990)CrossRefGoogle Scholar
  24. 24.
    Kumar, K.R., Vannelli, A.: Strategic subcontracting for efficient disaggregated manufacturing. Int. J. Prod. Res. 25(12), 1715–1728 (1987)Google Scholar
  25. 25.
    Kusiak, A.: The generalized group technology concept. Int. J. Prod. Res. 25(4), 561–569 (1987)CrossRefGoogle Scholar
  26. 26.
    Lei, D., Wu, Z.: Tabu search for multiple-criteria manufacturing cell design. Int. J. Adv. Manuf. Technol. 28, 950–956 (2006)CrossRefGoogle Scholar
  27. 27.
    Liang, M., Zolfaghari, S.: Machine cell formation considering processing times and machine capacities: an ortho-synapse Hopfield neural netowrk approach. J. Intell. Manuf. 10, 437–447 (1999)CrossRefGoogle Scholar
  28. 28.
    McAuley, J.: Machine grouping for efficient production. Prod. Eng. Res. Dev. 51(2), 53–57 (1972)Google Scholar
  29. 29.
    McCormick, W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20(5), 993–1009 (1972)CrossRefzbMATHGoogle Scholar
  30. 30.
    Mitrofanov, S.P.: Nauchnye osnovy gruppovoy tekhnologii. Lenizdat, Leningrad, Russia, 435 pp (1959) (in Russian)Google Scholar
  31. 31.
    Mitrofanov, S.P.: The Scientific Principles of Group Technology. Boston Spa. National Lending Library Translation, Yorkshire (1966) (Translation of Mitrofanov (1959))Google Scholar
  32. 32.
    Mosier, C.T.: An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine cell formation problem. Int. J. Prod. Res. 27(10), 1811–1835 (1989)CrossRefGoogle Scholar
  33. 33.
    Mosier, C.T., Taube, L.: Weighted similarity measure heuristics for the group technology machine clustering problem. OMEGA 13(6), 577–583 (1985)CrossRefGoogle Scholar
  34. 34.
    Nair, G.J.K., Narendran, T.T.: Grouping index: a new quantitative criterion for goodness of block-diagonal forms in group technology. Int. J. Prod. Res. 34(10), 2767–2782 (1996)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ng, S.: Worst-case analysis of an algorithm for cellular manufacturing. Eur. J. Oper. Res. 69(3), 384–398 (1993)CrossRefzbMATHGoogle Scholar
  36. 36.
    Ng, S.: On the characterization and measure of machine cells in group technology. Oper. Res. 44(5), 735–744 (1996)CrossRefzbMATHGoogle Scholar
  37. 37.
    Rajagopalan, R., Batra, J.L.: Design of cellular production systems: a graph-theoretic approach. Int. J. Prod. Res. 13(6), 567–579 (1975)CrossRefGoogle Scholar
  38. 38.
    Sandbothe, R.A.: Two observations on the grouping efficacy measure for goodness of block diagonal forms. Int. J. Prod. Res. 36, 3217–3222 (1998)CrossRefzbMATHGoogle Scholar
  39. 39.
    Seifoddini, H., Wolfe, P.M.: Application of the similarity coefficient method in group technology. IIE Trans. 18(3), 271–277 (1986)CrossRefGoogle Scholar
  40. 40.
    Shtub, A.: Modelling group technology cell formation as a generalized assignment problem. Int. J. Prod. Res. 27(5), 775–782 (1989)CrossRefGoogle Scholar
  41. 41.
    Srinivasan, G., Narendran, T.T.: GRAFICS-A nonhierarchical clustering-algorithm for group technology. Int. J. Prod. Res. 29(3), 463–478 (1991)CrossRefGoogle Scholar
  42. 42.
    Stanfel, L.: Machine clustering for economic production. Eng. Costs Prod. Econ. 9, 73–81 (1985)CrossRefGoogle Scholar
  43. 43.
    Waghodekar, P.H., Sahu, S.: Machine-component cell formation in group technology MACE. Int. J. Prod. Res. 22, 937–948 (1984)CrossRefGoogle Scholar
  44. 44.
    Won, Y., Lee, K.C.: Modified p-median approach for efficient GT cell formation. Comput. Ind. Eng. 46, 495–510 (2004)CrossRefGoogle Scholar
  45. 45.
    Wu, X., Chao-Hsien, C., Wang, Y., Yan, W.: A genetic algorithm for cellular manufacturing design and layout. Eur. J. Oper. Res. 181, 156–167 (2007)CrossRefzbMATHGoogle Scholar
  46. 46.
    Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151, 434–446 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Yang, M.-S., Yang, J.-H.: Machine-part cell formation in group technology using a modified ART1 method. Eur. J. Oper. Res. 188(1), 140–152 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ilya Bychkov
    • 1
    Email author
  • Mikhail Batsyn
    • 1
  • Panos M. Pardalos
    • 1
    • 2
  1. 1.Laboratory of Algorithms and Technologies for Network AnalysisNational Research University Higher School of EconomicsNizhny NovgorodRussia
  2. 2.Center for Applied Optimization, University of FloridaGainesvilleUSA

Personalised recommendations