Advertisement

Minimized-Torque-Oriented Design of Parallel Modular Mechanism for Humanoid Waist

  • Mouna Souissi
  • Vincent HugelEmail author
  • Samir Garbaya
  • John Nassour
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 4)

Abstract

This article focuses on the design and integration of a parallel modular mechanism inside the waist of a human-sized biped robot to enable tilting motion of the torso. The mechanism for each tier is adapted from the parallel 2-degree-of-freedom tilting part of an existing 3-rotation flight simulator structure. The main contribution of this work is the design of a minimized-torque-oriented optimization process that takes into account the upper mass load to be supported by the mechanism, the constrained volume of the waist, a minimal dexterity threshold, and the tilting range required. The design process aims to determine the relative size and position of the different parts of the mechanism. The objective consists of minimizing the actuator average torque over the entire tilt range, and to evaluate how much torque reduction this parallel mechanism can bring compared with the use of a serial mechanism. Up to three modules can be stacked inside the waist to limit the actuator torques and to reach the required tilting range for sitting and bending movements.

Keywords

Parallel mechanism Humanoid waist Design optimization Global torque minimisation Actuator sizing 

References

  1. 1.
    Cibert, C., Hugel, V.: Compliant intervertebral mechanism for humanoid backbone: Kinematic modeling and optimization. Mech. Mach. Theory. 66, 32–55 (2013)CrossRefGoogle Scholar
  2. 2.
    Dariush, B., Gienger, M., Jian, B., Goerick, C., Fujimura, K.: Whole body humanoid control from human motion descriptors. In: IEEE International Conference on Robotics and Automation, pp. 2677–2684 (2008)Google Scholar
  3. 3.
    Gill, P., Murray, W., Wright, M.: Practical Optimization. Academic Press, Dublin (1981)Google Scholar
  4. 4.
    Gosselin, C.: Kinematics analysis optimization and programming of parallel robotic manipulators. Ph.D. thesis, Mc Gill University (1988)Google Scholar
  5. 5.
    Hao, F., Merlet, J.P.: Multi-criteria optimal design of parallel manipulators based on interval analysis. Mech. Mach. Theory 40, 151–157 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hay, A., Snyman, J.A.: Methodologies for the optimal design of parallel manipulators. Int. J. Numer. Methods Eng. 59(1), 131–152 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kapandji, I.A.: The Physiology of the Joints: The Trunk and the Vertebral Column, vol. 3 (2007)Google Scholar
  8. 8.
    Kim, J., Park, I., Lee, J., Kim, M., Cho, B., Oh, J.: System design and dynamic walking of humanoid robot KHR-2. In: IEEE/RSJ International Conference on Robotics and Automation, pp. 1431–1436 (2005)Google Scholar
  9. 9.
    Kong, X., Gosselin, C.: Type synthesis of three-degree-of-freedom spherical parallel manipulators. Int. J. Robot. Res. 23, 237–245 (2004)CrossRefGoogle Scholar
  10. 10.
    Lenarčič, J., Bajd, T., Stanišić, M.: Robot mechanisms. In: International Series on Intelligent Systems, Control and Automation–Science and Engineering, vol. 60. Springer, Berlin (2013)Google Scholar
  11. 11.
    Liang, C., Ceccarelli, M.: Design and simulation a waist-trunk system for a humanoid robot. Mech. Mach. Theory 53, 50–65 (2012)CrossRefGoogle Scholar
  12. 12.
    Lohmeier, S., Buschmann, T., Ulbrich, H., Pfeiffer, F.: Modular joint design for performance enhanced humanoid robot lola. In: IEEE International Conference on Robotics and Automation, pp. 88–93 (2006)Google Scholar
  13. 13.
    Lopes, A.M., Pires, E.S., Barbosa, M.R.: Design of a parallel robotic manipulator using evolutionary computing. Int. J. Adv. Robot. Syst. 9–27 (2012)Google Scholar
  14. 14.
    Lou, Y., Liu, G., Chen, N., Li, Z.: Optimal design of parallel manipulators for maximum effective regular workspace. In: IEEE/RSJ International Conference on Intelligent Robotics and System, pp. 795–800 (2005)Google Scholar
  15. 15.
    Marques, H.G., Jäntsch, M., Wittmeier, S., Holland, O., Alessandro, C., Diamond, A., Lungarella, M., Knight, R.: Ecce1: the first of a series of anthropomimetic musculoskelal upper torsos. In: International Conference on Humanoid Robotics, pp. 391–396 (2010)Google Scholar
  16. 16.
    Mehta, V., Dasgupta, B.: A general approach for optimal kinematic design of 6-DOF parallel manipulators. In: Sãdhanã, Indian Academy of Sciences, vol. 36. Springer, Berlin (2011)Google Scholar
  17. 17.
    Merlet, J.P.: Parallel Robots, Solid Mechanics and its Applications, 2nd edn., vol. 128. Springer, Berlin (2006)Google Scholar
  18. 18.
    Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A.: Development of a new humanoid robot wabian-2. In: IEEE International Conference on Robotics and Automation, pp. 76–81 (2006)Google Scholar
  19. 19.
    Osada, M., Izawa, T., Urata, J., Nakanishi, Y., Okada, K., Inaba, M.: Approach of planar muscle suitable for musculoskeletal humanoids, especially for their body trunk with spine having multiple vertebral. In: IEEE-RAS International Conference on Humanoid Robotics, pp. 358–363 (2011)Google Scholar
  20. 20.
    Roos, L., Guenter, F., Guignard, A., Billard, A.G.: Design of a biomimetic spine for the humanoid robot robota. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 329–334 (2006)Google Scholar
  21. 21.
    Sabrié, E.: Analyse d’un mécanisme de simulation de vol sphérique et son contrôle en temps réel. Master’s thesis, Faculté des sciences et de génie universitaire, Laval, Québec (2004)Google Scholar
  22. 22.
    Souissi, M., Hugel, V., Blazevic, P.: Influence of the number of humanoid vertebral column pitch joints in flexion movements. In: International Conference on Automation, Robotics and Application, pp. 277–282 (2011)Google Scholar
  23. 23.
    Stamper, R.E., Tsai, L.W., Walsh, G.C.: Optimization of a three-dof translational platform for well-conditioned workspace. In: IEEE International Conference on Robotics and Automation, pp. 3250–3255 (1997)Google Scholar
  24. 24.
    Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 496–502 (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mouna Souissi
    • 1
  • Vincent Hugel
    • 2
    Email author
  • Samir Garbaya
    • 3
  • John Nassour
    • 4
  1. 1.HEILilleFrance
  2. 2.Université de ToulonToulonFrance
  3. 3.ENSAMParisFrance
  4. 4.Technische Universität ChemnitzChemnitzGermany

Personalised recommendations