Medical Management for Pituitary Adenoma Patients

  • Gregory K. HongEmail author


Management of patients with pituitary adenomas undergoing transsphenoidal surgery requires an understanding of the various medical issues relevant to the preoperative, perioperative, and postoperative states. The identification and appropriate management of tumor-induced hypopituitarism can lessen the potential for operative complications; hypopituitarism itself can be a complication of surgery requiring long-term medical management to ensure optimal health for the patient. While transsphenoidal surgery functions as the preferred management strategy for many pituitary adenomas, medical therapy is effective for several types of clinically functioning adenomas. The high efficacy of medical therapy in treating prolactinomas is well established; surgery serves an adjunctive role in this condition. Medical therapy of acromegaly and Cushing’s disease is often utilized in the setting of persistent disease after surgery or while awaiting the therapeutic effect of radiation therapy to occur. While numerous medical options are available for treating both acromegaly and Cushing’s disease, the selection of a particular agent can be a challenging endeavor requiring a thorough knowledge of the risks and benefits of each medication. An understanding of the issues relevant to medical therapy of individuals undergoing transsphenoidal surgery is critical to providing optimal multidisciplinary care to this subset of patients.


Pituitary Adenoma Cushing’s Disease Prolactinoma Acromegaly 


  1. 1.
    Friedel ME, Johnston DR, Singhal S, et al. Airway management and perioperative concerns in acromegaly patients undergoing endoscopic transsphenoidal surgery for pituitary tumors. Otolaryngol Head Neck Surg. 2013;149(6):840–4. doi: 10.1177/0194599813507236.CrossRefPubMedGoogle Scholar
  2. 2.
    Kamenicky P, Droumaguet C, Salenave S, et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 2011;96(9):2796–804. doi: 10.1210/jc.2011-0536.CrossRefPubMedGoogle Scholar
  3. 3.
    Pappachan JM, Raskauskiene D, Raman Kutty V, et al. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J Clin Endocrinol Metab. 2015;100(4):1405–11. jc20143787 doi: 10.1210/jc.2014-3787.CrossRefPubMedGoogle Scholar
  4. 4.
    Hofland LJ, Feelders RA, de Herder WW, et al. Pituitary tumours: the sst/D2 receptors as molecular targets. Mol Cell Endocrinol. 2010;326(1-2):89–98. doi: 10.1016/j.mce.2010.04.020.CrossRefPubMedGoogle Scholar
  5. 5.
    Koga M, Nakao H, Arao M, et al. Demonstration of specific dopamine receptors on human pituitary adenomas. Acta Endocrinol. 1987;114(4):595–602.PubMedGoogle Scholar
  6. 6.
    Molitch ME. Pharmacologic resistance in prolactinoma patients. Pituitary. 2005;8(1):43–52. doi: 10.1007/s11102-005-5085-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Feldkamp J, Santen R, Harms E, et al. Incidentally discovered pituitary lesions: high frequency of macroadenomas and hormone-secreting adenomas - results of a prospective study. Clin Endocrinol. 1999;51(1):109–13. cen748 [pii]CrossRefGoogle Scholar
  8. 8.
    Luton JP, Thieblot P, Valcke JC, et al. Reversible gonadotropin deficiency in male Cushing’s disease. J Clin Endocrinol Metab. 1977;45(3):488–95. doi: 10.1210/jcem-45-3-488.CrossRefPubMedGoogle Scholar
  9. 9.
    Klibanski A. Clinical practice. Prolactinomas. N Engl J Med. 2010;362(13):1219–26. doi: 10.1056/NEJMcp0912025.CrossRefPubMedGoogle Scholar
  10. 10.
    Vance ML. Hypopituitarism. N Engl J Med. 1994;330(23):1651–62. doi: 10.1056/NEJM199406093302306.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamamoto T, Fukuyama J, Fujiyoshi A. Factors associated with mortality of myxedema coma: report of eight cases and literature survey. Thyroid. 1999;9(12):1167–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Arlt W. The approach to the adult with newly diagnosed adrenal insufficiency. J Clin Endocrinol Metab. 2009;94(4):1059–67. doi: 10.1210/jc.2009-0032.CrossRefPubMedGoogle Scholar
  13. 13.
    Molitch ME, Clemmons DR, Malozowski S, et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(6):1587–609. doi: 10.1210/jc.2011-0179.CrossRefPubMedGoogle Scholar
  14. 14.
    Erturk E, Jaffe CA, Barkan AL. Evaluation of the integrity of the hypothalamic-pituitary-adrenal axis by insulin hypoglycemia test. J Clin Endocrinol Metab. 1998;83(7):2350–4. doi: 10.1210/jcem.83.7.4980.PubMedGoogle Scholar
  15. 15.
    Cunningham SK, Moore A, McKenna TJ. Normal cortisol response to corticotropin in patients with secondary adrenal failure. Arch Intern Med. 1983;143(12):2276–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kristof RA, Rother M, Neuloh G, et al. Incidence, clinical manifestations, and course of water and electrolyte metabolism disturbances following transsphenoidal pituitary adenoma surgery: a prospective observational study. J Neurosurg. 2009;111(3):555–62. doi: 10.3171/2008.9.JNS08191.CrossRefPubMedGoogle Scholar
  17. 17.
    Miller M, Dalakos T, Moses AM, et al. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9.CrossRefPubMedGoogle Scholar
  18. 18.
    van Aken MO, Lamberts SW. Diagnosis and treatment of hypopituitarism: an update. Pituitary. 2005;8(3-4):183–91. doi: 10.1007/s11102-006-6039-z.CrossRefPubMedGoogle Scholar
  19. 19.
    Schneider HJ, Aimaretti G, Kreitschmann-Andermahr I, et al. Hypopituitarism. Lancet. 2007;369(9571):1461–70. S0140-6736(07)60673-4 [pii]CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis L, Robinson RF, Yee J, et al. Fatal adrenal cortical insufficiency precipitated by surgery during prolonged continuous cortisone treatment. Ann Intern Med. 1953;39(1):116–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Mah PM, Jenkins RC, Rostami-Hodjegan A, et al. Weight-related dosing, timing and monitoring hydrocortisone replacement therapy in patients with adrenal insufficiency. Clin Endocrinol. 2004;61(3):367–75. doi: 10.1111/j.1365-2265.2004.02106.x.CrossRefGoogle Scholar
  22. 22.
    Bleicken B, Hahner S, Loeffler M, et al. Influence of hydrocortisone dosage scheme on health-related quality of life in patients with adrenal insufficiency. Clin Endocrinol. 2010;72(3):297–304. doi: 10.1111/j.1365-2265.2009.03596.x.CrossRefGoogle Scholar
  23. 23.
    Arlt W, Rosenthal C, Hahner S, et al. Quality of glucocorticoid replacement in adrenal insufficiency: clinical assessment vs. timed serum cortisol measurements. Clin Endocrinol. 2006;64(4):384–9. CEN2473 [pii]Google Scholar
  24. 24.
    Plumpton FS, Besser GM, Cole PV. Corticosteroid treatment and surgery. 2. The management of steroid cover. Anaesthesia. 1969;24(1):12–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Martin MM. Coexisting anterior pituitary and neurohypophyseal insufficiency. A syndrome with diagnostic implication. Arch Intern Med. 1969;123(4):409–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid. 2014;24(12):1670–751. doi: 10.1089/thy.2014.0028.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fonseca V, Brown R, Hochhauser D, et al. Acute adrenal crisis precipitated by thyroxine. Br Med J (Clin Res Ed). 1986;292(6529):1185–6.CrossRefGoogle Scholar
  28. 28.
    Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am J Med Sci. 1992;304(1):4–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22. doi: 10.1056/NEJMoa1000485.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59. doi: 10.1210/jc.2009-2354.CrossRefPubMedGoogle Scholar
  31. 31.
    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72. doi: 10.1210/jcem.84.10.6079.CrossRefPubMedGoogle Scholar
  32. 32.
    Crofton PM, Evans N, Bath LE, et al. Physiological versus standard sex steroid replacement in young women with premature ovarian failure: effects on bone mass acquisition and turnover. Clin Endocrinol. 2010;73(6):707–14. doi: 10.1111/j.1365-2265.2010.03868.x.CrossRefGoogle Scholar
  33. 33.
    Canonico M, Oger E, Plu-Bureau G, et al. Hormone therapy and venous thromboembolism among postmenopausal women: impact of the route of estrogen administration and progestogens: the ESTHER study. Circulation. 2007;115(7):840–5. 115/7/840 [pii]CrossRefPubMedGoogle Scholar
  34. 34.
    Finkel DM, Phillips JL, Snyder PJ. Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N Engl J Med. 1985;313(11):651–5. doi: 10.1056/NEJM198509123131102.CrossRefPubMedGoogle Scholar
  35. 35.
    Bell J, Parker KL, Swinford RD, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2010;95(1):167–77. doi: 10.1210/jc.2009-0178.CrossRefPubMedGoogle Scholar
  36. 36.
    Darendeliler F, Karagiannis G, Wilton P, et al. Recurrence of brain tumours in patients treated with growth hormone: analysis of KIGS (Pfizer international growth database). Acta Paediatr. 2006;95(10):1284–90. doi: 10.1080/08035250600577889.CrossRefPubMedGoogle Scholar
  37. 37.
    Cook DM, Ludlam WH, Cook MB. Route of estrogen administration helps to determine growth hormone (GH) replacement dose in GH-deficient adults. J Clin Endocrinol Metab. 1999;84(11):3956–60. doi: 10.1210/jcem.84.11.6113.PubMedGoogle Scholar
  38. 38.
    Arafah BM. Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 1986;62(6):1173–9. doi: 10.1210/jcem-62-6-1173.CrossRefPubMedGoogle Scholar
  39. 39.
    Karavitaki N, Thanabalasingham G, Shore HC, et al. Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma. Clin Endocrinol. 2006;65(4):524–9. CEN2627 [pii]CrossRefGoogle Scholar
  40. 40.
    Katznelson L, Laws Jr ER, Melmed S, et al. Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(11):3933–51. doi: 10.1210/jc.2014-2700.CrossRefPubMedGoogle Scholar
  41. 41.
    Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40. doi: 10.1210/jc.2008-0125.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sandret L, Maison P, Chanson P. Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2011;96(5):1327–35. doi: 10.1210/jc.2010-2443.CrossRefPubMedGoogle Scholar
  43. 43.
    Pivonello R, De Martino MC, Cappabianca P, et al. The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab. 2009;94(1):223–30. doi: 10.1210/jc.2008-1533.CrossRefPubMedGoogle Scholar
  44. 44.
    Godbout A, Manavela M, Danilowicz K, et al. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol. 2010;163(5):709–16. doi: 10.1530/EJE-10-0382.CrossRefPubMedGoogle Scholar
  45. 45.
    Melmed S, Casanueva FF, Hoffman AR, et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(2):273–88. doi: 10.1210/jc.2010-1692.CrossRefPubMedGoogle Scholar
  46. 46.
    Thorner MO, Martin WH, Rogol AD, et al. Rapid regression of pituitary prolactinomas during bromocriptine treatment. J Clin Endocrinol Metab. 1980;51(3):438–45. doi: 10.1210/jcem-51-3-438.CrossRefPubMedGoogle Scholar
  47. 47.
    Verhelst J, Abs R, Maiter D, et al. Cabergoline in the treatment of hyperprolactinemia: a study in 455 patients. J Clin Endocrinol Metab. 1999;84(7):2518–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Ono M, Miki N, Kawamata T, et al. Prospective study of high-dose cabergoline treatment of prolactinomas in 150 patients. J Clin Endocrinol Metab. 2008;93(12):4721–7. doi: 10.1210/jc.2007-2758.CrossRefPubMedGoogle Scholar
  49. 49.
    Valassi E, Klibanski A, Biller BM. Clinical review#: potential cardiac valve effects of dopamine agonists in hyperprolactinemia. J Clin Endocrinol Metab. 2010;95(3):1025–33. doi: 10.1210/jc.2009-2095.CrossRefPubMedGoogle Scholar
  50. 50.
    Molitch ME. Management of medically refractory prolactinoma. J Neuro-Oncol. 2014;117(3):421–8. doi: 10.1007/s11060-013-1270-8.CrossRefGoogle Scholar
  51. 51.
    Whitelaw BC, Dworakowska D, Thomas NW, et al. Temozolomide in the management of dopamine agonist-resistant prolactinomas. Clin Endocrinol. 2012;76(6):877–86. doi: 10.1111/j.1365-2265.2012.04373.x.CrossRefGoogle Scholar
  52. 52.
    Petersenn S, Beckers A, Ferone D, et al. Therapy of endocrine disease: outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol. 2015;172(6):R227–39. doi: 10.1530/EJE-14-0883.CrossRefPubMedGoogle Scholar
  53. 53.
    Starke RM, Williams BJ, Vance ML, et al. Radiation therapy and stereotactic radiosurgery for the treatment of Cushing’s disease: an evidence-based review. Curr Opin Endocrinol Diabetes Obes. 2010;17(4):356–64. doi: 10.1097/MED.0b013e32833ab069.CrossRefPubMedGoogle Scholar
  54. 54.
    Feelders RA, Hofland LJ. Medical treatment of Cushing’s disease. J Clin Endocrinol Metab. 2013;98(2):425–38. doi: 10.1210/jc.2012-3126.CrossRefPubMedGoogle Scholar
  55. 55.
    Castinetti F, Guignat L, Giraud P, et al. Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab. 2014;99(5):1623–30. doi: 10.1210/jc.2013-3628.CrossRefPubMedGoogle Scholar
  56. 56.
    Greenblatt HK, Greenblatt DJ. Liver injury associated with ketoconazole: review of the published evidence. J Clin Pharmacol. 2014;54(12):1321–9. doi: 10.1002/jcph.400.CrossRefPubMedGoogle Scholar
  57. 57.
    Coppage Jr WS, Island D, Smith M, et al. Inhibition of aldosterone secretion and modification of electrolyte excretion in man by a chemical inhibitor of 11 beta-hydroxylation. J Clin Invest. 1959;38:2101–10. doi: 10.1172/JCI103988.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Daniel E, Aylwin S, Mustafa O, et al. Effectiveness of metyrapone in treating Cushing’s syndrome: a retrospective multicenter study in 195 patients. J Clin Endocrinol Metab. 2015;100(11):4146–54. jc20152616 doi: 10.1210/jc.2015-2616.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Close CF, Mann MC, Watts JF, et al. ACTH-independent Cushing’s syndrome in pregnancy with spontaneous resolution after delivery: control of the hypercortisolism with metyrapone. Clin Endocrinol. 1993;39(3):375–9.CrossRefGoogle Scholar
  60. 60.
    Blanco C, Maqueda E, Rubio JA, et al. Cushing’s syndrome during pregnancy secondary to adrenal adenoma: metyrapone treatment and laparoscopic adrenalectomy. J Endocrinol Investig. 2006;29(2):164–7. 1181 [pii]CrossRefGoogle Scholar
  61. 61.
    Baudry C, Coste J, Bou Khalil R, et al. Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol. 2012;167(4):473–81. doi: 10.1530/EJE-12-0358.CrossRefPubMedGoogle Scholar
  62. 62.
    van Seters AP, Moolenaar AJ. Mitotane increases the blood levels of hormone-binding proteins. Acta Endocrinol. 1991;124(5):526–33.PubMedGoogle Scholar
  63. 63.
    Preda VA, Sen J, Karavitaki N, et al. Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: a review. Eur J Endocrinol. 2012;167(2):137–43. doi: 10.1530/EJE-12-0274.PubMedGoogle Scholar
  64. 64.
    Schulte HM, Benker G, Reinwein D, et al. Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab. 1990;70(5):1426–30. doi: 10.1210/jcem-70-5-1426.CrossRefPubMedGoogle Scholar
  65. 65.
    Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab. 2004;89(5):2452–62. doi: 10.1210/jc.2003-030837.CrossRefPubMedGoogle Scholar
  66. 66.
    Colao A, Petersenn S, Newell-Price J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366(10):914–24. doi: 10.1056/NEJMoa1105743.CrossRefPubMedGoogle Scholar
  67. 67.
    Pivonello R, Petersenn S, Newell-Price J, et al. Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a phase III study. Clin Endocrinol. 2014;81(3):408–17. doi: 10.1111/cen.12431.CrossRefGoogle Scholar
  68. 68.
    Henry RR, Ciaraldi TP, Armstrong D, et al. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab. 2013;98(8):3446–53. doi: 10.1210/jc.2013-1771.CrossRefPubMedGoogle Scholar
  69. 69.
    Nieman LK, Biller BM, Findling JW, et al. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100(8):2807–31. doi: 10.1210/jc.2015-1818.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fleseriu M, Biller BM, Findling JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–49. doi: 10.1210/jc.2011-3350.CrossRefPubMedGoogle Scholar
  71. 71.
    Fleseriu M, Findling JW, Koch CA, et al. Changes in plasma ACTH levels and corticotroph tumor size in patients with Cushing’s disease during long-term treatment with the glucocorticoid receptor antagonist mifepristone. J Clin Endocrinol Metab. 2014;99(10):3718–27. doi: 10.1210/jc.2014-1843.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fleseriu M. Recent advances in the medical treatment of Cushing’s disease. F1000Prime Rep. 2014;6:18. doi: 10.12703/P6-18.eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Barbot M, Albiger N, Ceccato F, et al. Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment: should we start with cabergoline or ketoconazole? Pituitary. 2014;17(2):109–17. doi: 10.1007/s11102-013-0475-3.CrossRefPubMedGoogle Scholar
  74. 74.
    Feelders RA, de Bruin C, Pereira AM, et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med. 2010;362(19):1846–8. doi: 10.1056/NEJMc1000094.CrossRefPubMedGoogle Scholar
  75. 75.
    Fleseriu M. The role of combination medical therapy in acromegaly: hope for the nonresponsive patient. Curr Opin Endocrinol Diabetes Obes. 2013;20(4):321–9. doi: 10.1097/MED.0b013e32836318a1.CrossRefPubMedGoogle Scholar
  76. 76.
    Abs R, Verhelst J, Maiter D, et al. Cabergoline in the treatment of acromegaly: a study in 64 patients. J Clin Endocrinol Metab. 1998;83(2):374–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Maione L, Garcia C, Bouchachi A, et al. No evidence of a detrimental effect of cabergoline therapy on cardiac valves in patients with acromegaly. J Clin Endocrinol Metab. 2012;97(9):E1714–9. doi: 10.1210/jc.2012-1833.CrossRefPubMedGoogle Scholar
  78. 78.
    van der Lely AJ, Hutson RK, Trainer PJ, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet. 2001;358(9295):1754–9.CrossRefPubMedGoogle Scholar
  79. 79.
    van der Lely AJ, Biller BM, Brue T, et al. Long-term safety of pegvisomant in patients with acromegaly: comprehensive review of 1288 subjects in ACROSTUDY. J Clin Endocrinol Metab. 2012;97(5):1589–97. doi: 10.1210/jc.2011-2508.CrossRefPubMedGoogle Scholar
  80. 80.
    Marazuela M, Paniagua AE, Gahete MD, et al. Somatotroph tumor progression during pegvisomant therapy: a clinical and molecular study. J Clin Endocrinol Metab. 2011;96(2):E251–9. doi: 10.1210/jc.2010-1742.CrossRefPubMedGoogle Scholar
  81. 81.
    Freda PU, Katznelson L, van der Lely AJ, et al. Long-acting somatostatin analog therapy of acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2005;90(8):4465–73. jc.2005-0260 [pii]CrossRefPubMedGoogle Scholar
  82. 82.
    Colao A, Cappabianca P, Caron P, et al. Octreotide LAR vs. surgery in newly diagnosed patients with acromegaly: a randomized, open-label, multicentre study. Clin Endocrinol. 2009;70(5):757–68. doi: 10.1111/j.1365-2265.2008.03441.x.CrossRefGoogle Scholar
  83. 83.
    Mercado M, Borges F, Bouterfa H, et al. A prospective, multicentre study to investigate the efficacy, safety and tolerability of octreotide LAR (long-acting repeatable octreotide) in the primary therapy of patients with acromegaly. Clin Endocrinol. 2007;66(6):859–68. CEN2825 [pii]CrossRefGoogle Scholar
  84. 84.
    Colao A, Bronstein MD, Freda P, et al. Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab. 2014;99(3):791–9. doi: 10.1210/jc.2013-2480.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Murray RD, Melmed S. A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly. J Clin Endocrinol Metab. 2008;93(8):2957–68. doi: 10.1210/jc.2008-0027.CrossRefPubMedGoogle Scholar
  86. 86.
    Giustina A, Mazziotti G, Torri V, et al. Meta-analysis on the effects of octreotide on tumor mass in acromegaly. PLoS One. 2012;7(5):e36411. doi: 10.1371/journal.pone.0036411.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bruns C, Lewis I, Briner U, et al. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 2002;146(5):707–16. 146707 [pii]CrossRefPubMedGoogle Scholar
  88. 88.
    Cozzi R, Montini M, Attanasio R, et al. Primary treatment of acromegaly with octreotide LAR: a long-term (up to nine years) prospective study of its efficacy in the control of disease activity and tumor shrinkage. J Clin Endocrinol Metab. 2006;91(4):1397–403. jc.2005-2347 [pii]CrossRefPubMedGoogle Scholar
  89. 89.
    Melmed S, Popovic V, Bidlingmaier M, et al. Safety and efficacy of oral octreotide in acromegaly: results of a multicenter phase III trial. J Clin Endocrinol Metab. 2015;100(4):1699–708. doi: 10.1210/jc.2014-4113.CrossRefPubMedGoogle Scholar
  90. 90.
    Madsen M, Poulsen PL, Orskov H, et al. Cotreatment with pegvisomant and a somatostatin analog (SA) in SA-responsive acromegalic patients. J Clin Endocrinol Metab. 2011;96(8):2405–13. doi: 10.1210/jc.2011-0654.CrossRefPubMedGoogle Scholar
  91. 91.
    Trainer PJ, Ezzat S, D'Souza GA, et al. A randomized, controlled, multicentre trial comparing pegvisomant alone with combination therapy of pegvisomant and long-acting octreotide in patients with acromegaly. Clin Endocrinol. 2009;71(4):549–57. doi: 10.1111/j.1365-2265.2009.03620.x.CrossRefGoogle Scholar
  92. 92.
    Neggers SJ, van Aken MO, de Herder WW, et al. Quality of life in acromegalic patients during long-term somatostatin analog treatment with and without pegvisomant. J Clin Endocrinol Metab. 2008;93(10):3853–9. doi: 10.1210/jc.2008-0669.CrossRefPubMedGoogle Scholar
  93. 93.
    Neggers SJ, de Herder WW, Feelders RA, et al. Conversion of daily pegvisomant to weekly pegvisomant combined with long-acting somatostatin analogs, in controlled acromegaly patients. Pituitary. 2011;14(3):253–8. doi: 10.1007/s11102-010-0289-5.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Feenstra J, de Herder WW, ten Have SM, et al. Combined therapy with somatostatin analogues and weekly pegvisomant in active acromegaly. Lancet. 2005;365(9471):1644–6. doi: 10.1016/S0140-6736(05)63011-5.CrossRefPubMedGoogle Scholar
  95. 95.
    Higham CE, Atkinson AB, Aylwin S, et al. Effective combination treatment with cabergoline and low-dose pegvisomant in active acromegaly: a prospective clinical trial. J Clin Endocrinol Metab. 2012;97(4):1187–93. doi: 10.1210/jc.2011-2603.CrossRefPubMedGoogle Scholar
  96. 96.
    Socin HV, Chanson P, Delemer B, et al. The changing spectrum of TSH-secreting pituitary adenomas: diagnosis and management in 43 patients. Eur J Endocrinol. 2003;148(4):433–42.CrossRefPubMedGoogle Scholar
  97. 97.
    Beck-Peccoz P, Lania A, Beckers A, et al. 2013 European thyroid association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. Eur Thyroid J. 2013;2(2):76–82. doi: 10.1159/000351007.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Brucker-Davis F, Oldfield EH, Skarulis MC, et al. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab. 1999;84(2):476–86. doi: 10.1210/jcem.84.2.5505.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Endocrinology, Department of MedicineUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations