Specificity and Cross-order Activity of Bacillus thuringiensis Pesticidal Proteins

  • Kees van Frankenhuyzen


Published data on insecticidal activity of crystal proteins from B. thuringiensis were incorporated into a database on Bt toxin specificity. At the end of 2013, 158 of the 329 known holotypes were tested against 252 species distributed across 95 families in 25 orders, 8 classes, and 5 phyla. Thirty of the 158 proteins were reported to have no pesticidal activity, 59 were active against Lepidoptera, 42 against Diptera, 40 against Coleoptera, 10 against Hemiptera, 4 against Hymenoptera, and 1 against Orthoptera. Reports of toxicity to Trichoptera, Neuroptera, and Siphonaptera were not substantiated. Twelve proteins were reported to have activity against non-Arthropod species in the phyla Platyhelminthes and Nematoda. Activity outside orders of primary specificity was reported for 28 proteins affecting 75 taxa and was substantiated by reasonable evidence (mortality estimates) for 21 proteins and 51 taxa. Substantiated cross-activity occurred in 14 primary rank families across three classes of pesticidal proteins (Cry, Cyt, and Vip). Within the phylum Arthropoda, cross-activities were substantiated for 12 proteins (Cry1Ca, Cry1Ia, Cry4Aa, Cry8Da, Cry10Aa, Cry11Aa, Cry30Fa, Cry30Ga, Cry51Aa, Cry54Aa, Cry56Aa, Vip1A/Vip2A) affecting species across two orders, five proteins (Cry1Ac, Cry1Ba, Cry3Aa, Cry2Aa, Cyt1Aa) affecting three orders, and one protein (Cyt1Ba) affecting four orders, all within the class Insecta. Testing of insecticidal proteins against species in other Arthropod classes has not produced conclusive evidence of lethal activity outside the class Insecta. Cross-phylum activity was substantiated only for three insecticidal proteins (Cry1Ab, Cry2Ab, Cry3Bb), which affected nematode growth and reproduction at high dose levels. Target toxicity of B. thuringiensis pesticidal proteins can be broadly classified as being high when proteins are active in the 0.01–0.10 μg/ml range (e.g., Diptera-active proteins), medium when active in the 0.10–10 μg/ml range (Lepidoptera-, some Diptera-, and most Coleoptera-active proteins), and low when active in the 10–1000 μg/ml range (Coleoptera- and Nematode-active proteins). These categories are based on 25%, (0.1 μg/ml), 50% (1 μg/ml), and 75% (10 μg/ml) percentiles of nonparametric distribution of 50% lethal concentration estimates (LC50s, n = 256) when pooled across all tested proteins and taxa. Toxicity (LC50s) outside the order of primary specificity was quantified for 16 proteins and 24 taxa. Compared to toxicity ranges established for Diptera-, Coleoptera-, Lepidoptera-, and Nematoda-active proteins, 15 cross-activities were in the low- (10–1000 μg/ml), seven in the medium- (0.10–10), and two in the high-toxicity range (0.01–0.10 μg/ml). Activities outside a protein’s suite of orders that is normally affected were mostly in the low-toxicity range. This was the case for toxicity of Cry1Ab, Cry1Ac, Cry2Aa, Cry3Aa, Cry4Aa, Cry11Aa, and Cyt1Aa to Hemiptera (aphids), of Cry51Aa to Hemiptera (Lygus spp.), and of Cyt1Ba to Hymenoptera (sawflies). The exception is high toxicity of Cry3Aa to fire ants (Hymenoptera). Activities that are within the suite of orders normally affected but outside a protein’s primary-order affinity were often in the medium-toxicity range of corresponding reference proteins. This group includes dipteran toxicity of Cry1Ac, lepidopteran toxicity of Cry8Da, and coleopteran toxicity of Cry1Ba, Cry1Ia, Cry10Aa, Cyt1Aa, and Cyt1Ba. Dipteran toxicity of Cry1Ba, Cry1Ca, and Cyt1Ba occurs at high dose levels compared to Diptera-active reference proteins. Cross-activities of B. thuringiensis pesticidal proteins need to be viewed with caution until they are confirmed through independent testing. Nevertheless, current evidence suggests that cross-activities are not uncommon, having been substantiated for ~13% of the 158 proteins tested to date, and may be more prevalent considering that one-third of proteins that were tested against species in two or more orders were confirmed to be cross-active. One-third of reported cross-activities fall within the range of toxicities exhibited by order-specific proteins that are commonly used in pest control applications. Cross-activities therefore should be considered when designing or approving the use of B. thuringiensis pesticidal proteins in pest control applications.


Bacillus thuringiensis Artropod Pesticidal-proteins Toxicity Cross-activities Pest-control 


  1. Ahmad W, Nicholls C, Ellar DJ (1989) Cloning and expression of an entomocidal protein gene from Bacillus thuringiensis galleriae toxic to both Lepidoptera and Diptera. FEMS Microbiol Lett 59:197–202CrossRefGoogle Scholar
  2. Akhtar ZR, Tian JC, Chen Y, Fang Q, Hu C, Chen M et al (2010) Impacts of six Bt rice lines on nontarget rice feeding thrips under laboratory and field conditions. Environ Entomol 39:715–726. doi: 10.1603/EN09095 PubMedCrossRefGoogle Scholar
  3. Al-Deeb MA, Wilde GE, Higgins RA (2001) No effect of Bacillus thuringiensis corn and Bacillus thuringiensis on the predator Orius insidiosus (Hemiptera: Anthocoridae). Environ Entomol 30(3):625–629Google Scholar
  4. Alvarez-Alfageme F, Ferry N, Castanera P, Ortego F, Gatehouse AMR (2008) Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae). Transgenic Res 17:943–954PubMedCrossRefGoogle Scholar
  5. Alvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res 20:467–479PubMedCrossRefGoogle Scholar
  6. Asano S, Yamashita C, Iizuka T, Takeuchi K, Yamanaka S, Cerg D, Yamamoto T (2003) A strain of Bacillus thuringiensis subsp. galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera; Scarabaeidae). Biol Control 28:191–196CrossRefGoogle Scholar
  7. Ashouri A, Michaud D, Cloutier C (2001) Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripes. BioControl 46(4):401–418CrossRefGoogle Scholar
  8. Bai YY, Jiang MX, Cheng JA, Wang D (2006) Effects of Cry1Ab toxin on Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) through its prey, Nilaparvata lugens (Stål Homoptera: Delphacidae), feeding on transgenic Bt rice. Environ Entomol 35:1130–1136CrossRefGoogle Scholar
  9. Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A (c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26(3):325–332CrossRefGoogle Scholar
  10. Baum JA, Chu CR, Rupar M, Brown GR, Donovan WP, Huesing JE, Ilagan O, Malvar TM, Walters M, Vaughn T (2004) Binary toxins from Bacillus thuringiensis active against the western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 70:4889–4898PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baum JA, Sukuru UR, Penn SR, Meyer SE, Subbarao S, Shi X, Flasinski S, Heck GR, Brown RS, Clark TL (2012) Cotton plants expressing a Hemiptera-active Bacillus thuringiensis crystal protein impact the development and survival of Lygus hesperus (Hemiptera: Miridae) nymphs. J Econ Entomol 105:616–624PubMedCrossRefGoogle Scholar
  12. Beachy RN, Fedoroff NV, Goldberg RB, McHughen A (2008) The burden of proof: a response to Rosi-Marshall et al. Proc Natl Acad Sci U S A 105:E9PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bernal CC, Aguda RM, Cohen MB (2002) Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomol Exp Appl 102(1):21–28CrossRefGoogle Scholar
  14. Bradfisch GA, Schnepf HE, Kim L (1998) Bacillus thuringiensis isolates active against weevils. U.S. Patent 5707619Google Scholar
  15. Bradfish GA, Muller-Cohn J, Narva KE, Fu JM, Thompson M (1999) Bacillus thuringiensis isolates, toxins, and genes for controlling certain coleopteran pests. U.S. Patent 5973231Google Scholar
  16. Bradley D, Harkey MA, Kim M-K, Biever KD, Bauer LS (1995) The insecticidal Cry1B crystal protein of Bacillus thuringiensis sp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J Invertebr Pathol 65:162–173PubMedCrossRefGoogle Scholar
  17. Bulla LA, Canda M (2004) Formicidae (ant) control using Bacillus thuringiensis toxin. U.S. Patent 6797490Google Scholar
  18. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234. doi: 10.1038/nature06403 PubMedCrossRefGoogle Scholar
  19. Chen M, Ye G-Y, Liu Z-C, Fang Q, Hu C, Peng Y-F, Shelton AM (2009) Analysis of Cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology 18:230–238PubMedCrossRefGoogle Scholar
  20. Clark BW, Coats JR (2006) Subacute effects of Cry1Ab Bt corn litter on the earthworm Eisenia fetida and the springtail Folsomia candida. Environ Entomol 35:1121–1129. doi: 10.1603/0046-225X-35.4.1121 CrossRefGoogle Scholar
  21. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813PubMedPubMedCentralGoogle Scholar
  22. De Souza Aguiar RW, Martins ES, Ribeiro BM, Monnerat RG (2012) Cry10Aa protein is highly toxic to Anthonomus grandis Boheman (Coleoptera: Curculionidae), an important insect pest in Brazilian cotton crop fields. Bt Res 3:20–28Google Scholar
  23. Dhillon MK, Sharma HC (2009) Effects of Bacillus thuringiensis δ-endotoxins Cry1Ab and Cry1Ac on the coccinellid beetle Cheilomenes sexmaculatus (Coleoptera: Coccinellidae) under direct and indirect exposure conditions. Biocontrol Sci Tech 19:407–420CrossRefGoogle Scholar
  24. D’amico V, Podgwaite JD, Duke S (2004) Biological activity of Bacillus thuringiensis and associated toxins against the Asian longhorned beetle (Coleoptera: Cerambycidae). J Entomol Sci 39(3):318–324Google Scholar
  25. de Castro TR, Ausique JJS, Nunes DH, Ibanhes FH, Júnior ID (2013) Risk assessment of Cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 59(4):421–433Google Scholar
  26. Digilio MC, Sasso R, Di Leo MG, Iodice L, Monti MM, Santeramo R, Arpaia S, Guerrieri E (2012) Interactions between Bt-expressing tomato and non-target insects: the aphid Macrosiphum euphorbiae and its natural enemies. J Plant Interact 7:71–77CrossRefGoogle Scholar
  27. Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt protein by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447CrossRefGoogle Scholar
  28. Escher N, Käch B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic Appl Ecol 1(2):161–169CrossRefGoogle Scholar
  29. Estruch JJ, Warren WG, Mullins AM, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394PubMedPubMedCentralCrossRefGoogle Scholar
  30. Federici BA, Bauer LS (1998) Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol 64:4368–4371PubMedPubMedCentralGoogle Scholar
  31. Feldman F, Dullemans A, Waalwijk C (1995) Binding of the CryIVD toxin of Bacillus thuringiensis subsp. to larval dipteran midgut proteins. Appl Environ Microbiol 61:2601–2605Google Scholar
  32. Garcia-Robles I, Sanchez J, Gruppe A, Martinez-Ramirez AC, Rausell C, Real MD, Bravo A (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochem Mol Biol 31:849–856PubMedCrossRefGoogle Scholar
  33. García M, Ortego F, Castañera P, Farinós GP (2010) Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control 55(3):225–233Google Scholar
  34. García M, Ortego F, Castañera P, Farinós G (2012) Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae). Bull Entomol Res 102(3):293–302. doi: 10.1017/S0007485311000666 PubMedCrossRefGoogle Scholar
  35. Gleave AP, Williams R, Hedges RJ (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of CryV-like insecticidal protein genes and characterization of a cryV gene cloned from Bacillus thuringiensis subsp kurstaki. Appl Environ Microbiol 59:1683–1687PubMedPubMedCentralGoogle Scholar
  36. Griffiths BS, Heckman LH, Caul S, Thompson J, Scrimgeour C, Krogg PH (2007) Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Plant Biotechnol J 5:60–68PubMedCrossRefGoogle Scholar
  37. Guillet P, Kurtak DC, Philippon B, Meyer R (1990) Use of Bacillus thuringiensis for onchocerciasis control in West Africa. In: de Barjac H, Sutherland DJ (eds) Bacterial control of mosquitoes and black flies. Rutgers University Press, New Brunswick, pp 187–201CrossRefGoogle Scholar
  38. Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74:6997–7001PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haider MZ, Ellar DJ (1987) Characterization of the toxicity and cytopathic specificity of a cloned Bacillus thuringiensis crystal protein gene using insect cell culture. Mol Microbiol 1:59–66PubMedCrossRefGoogle Scholar
  40. Haider MZ, Knowles BH, Ellar DJ (1986) Specificity of Bacillus thuringiensis var. colmeri insecticidal δ-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur J Biochem 156:531–540PubMedCrossRefGoogle Scholar
  41. Hanley A, Huang Z, Pett W (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. J Apicult Res 42:77–81CrossRefGoogle Scholar
  42. Hayakawa T, Kanagawa R, Kotani Y, Kimura M, Yamagiwa M, Yamane Y, Takebe S, Sakai H (2007) Parasporin-2Ab, a newly isolated cytotoxic crystal protein from Bacillus thuringiensis. Curr Microbiol 55:278–283PubMedCrossRefGoogle Scholar
  43. Heath ACG, Broadwell AH, Chilcott CN, Wigley PJ, Shoemaker CB (2004) Efficacy of native and recombinant Cry1Ba protein against experimentally induced and naturally acquired ovine myiasis (fly strike) in sheep. J Econ Entomol 97:1797–1804PubMedCrossRefGoogle Scholar
  44. Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998) Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:1255–1263CrossRefGoogle Scholar
  45. Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1999) Prey-mediated effects of Cry1Ab toxin and Cry2A protoxin on the predator Chrysoperla carnea. Ent Exp Appl 91:305–316CrossRefGoogle Scholar
  46. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255PubMedPubMedCentralGoogle Scholar
  47. Höss S, Arndt M, Baumgatrte S, Tebbe CC, Nguyen HT, Jehle JA (2008) Effects of transgenic corn and Cry1Ab protein on the nematode, Caenorhabditis elegans. Ecotoxicol Env Saf 70:334–340CrossRefGoogle Scholar
  48. Höss S, Nguyen HT, Menzel R, Pagel-Wieder S, Miethling-Graf R, Tebbe CC, Jehle JA, Traunspurger W (2011) Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. Sci Total Environ 409:2674–2684PubMedCrossRefGoogle Scholar
  49. Höss S, Menzel R, Gessler F, Nguyen HT, Jehle JA, Traunspurger W (2013) Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans. Environ Pollut 178:147–151PubMedCrossRefGoogle Scholar
  50. Howald R, Zwahlen C, Nentwig W (2003) Evaluation of Bt oilseed rape on the non-target herbivore Athalia rosae. Entomol Exp Appl 106:87–93CrossRefGoogle Scholar
  51. Hu Y, Georghoiu SB, Kelleher AJ, Aroian RV (2010) Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl Trop Dis 4(3):e614. doi: 10.1371/journal.pntd.0000614 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang DF, Zhang J, Song FP, Lang ZH (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China. J Invertebr Pathol 95:175–180PubMedCrossRefGoogle Scholar
  53. Isaac BC, Krieger EK, Mettus LA, Sivasupramaniam S, Farhad M (2001) Polypeptide compositions toxic to anthonomus insects, and methods of use. WIPO Patent WO 0187940Google Scholar
  54. Jensen PD, Dively GP, Swan CM, Lamp WO (2010) Exposure and non-target effects of transgenic Bt corn debris in streams. Environ Entomol 39:707–714. doi: 10.1603/EN09037 PubMedCrossRefGoogle Scholar
  55. Jones GW, Wirth MC, Monnerat RG, Berry C (2008) The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environ Microbiol 10:2418–2424PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jung Y-C, Mizuki E, Akao T, Côté J-C (2007) Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J Appl Microbiol 103:65–79PubMedCrossRefGoogle Scholar
  57. Kalushkov P, Nedved O (2005) Genetically modified potatoes expressing Cry3A protein do not affect aphidophagous coccinellids. J Appl Entomol 129:401–406CrossRefGoogle Scholar
  58. Koni PA, Ellar DJ (1994) Biochemical characterization of Bacillus thuringiensis cytolytic δ- endotoxins. Microbiology 140:1869–1880Google Scholar
  59. Kostichka K et al (1996) Cloning of a cryV-type insecticidal protein gene from Bacillus thuringiensis: the cryV-encoded protein is expressed early in stationary phase. J Bacteriol 178(7):2141–2144PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kotze AC, Grady JO, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol 35:1013–1022PubMedCrossRefGoogle Scholar
  61. Lawo NC, Wäckers FL, Romeis J (2010) Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla carnea. J Insect Physiol 56(11):1702–1710PubMedCrossRefGoogle Scholar
  62. Liu X-x et al (2005) Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Biol Control 35(2):134–141CrossRefGoogle Scholar
  63. Li X-Q, Tan A, Voegtline M, Bekele S, Chen C-S, Aroian RV (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102CrossRefGoogle Scholar
  64. Li H, Chougule NP, Bonning BC (2011) Interaction of the Bacillus thuringiensis delta endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris). J Invertebr Pathol 107:69–78PubMedCrossRefGoogle Scholar
  65. Liang H, Liu Y, Zhu J, Guan P, Li S, Wang S, Zheng A, Liu H, Li P (2011) Characterization of cry2-type genes of Bacillus thuringiensis strains from soil isolates of Sichuan basin, China Brazil. J Microbiol 42:140–146Google Scholar
  66. Lopez-Pazos SA, Gomez JEC, Salamanca JAC (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae). J Invertebr Pathol 101:242–245PubMedCrossRefGoogle Scholar
  67. Lozzia GC, Furlanis C, Manachini B, Rigamonti IE (1998) Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota: Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera: Chrysopidae). Bollettino di Zoologia agrarian e di Bachicoltura 30(2):153–164Google Scholar
  68. Lundgren JG, Wiedenmann RN (2004) Nutritional suitability of corn pollen for the predator Coleomegilla maculate (Coleoptera:Coccinellidae). J Insect Physiol 50:567–575PubMedCrossRefGoogle Scholar
  69. Lumbierres B, Albajes R, Pons X (2004) Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance. Ecol Entomol 29:309–317.
  70. Lumbierres B, Albajes R, Pons X (2012) Positive effect of Cry1ab-expressing Bt maize on the development and reproduction of the predator Orius majusculus under laboratory conditions. Biol Control 63:150. Ð156.Lozzia et al. (1998, 2000)CrossRefGoogle Scholar
  71. Martins ÉS, Aguiar RWS, Monnerat RG, Ribeiro BM (2006) Cry1Ba protein is toxic to cotton boll weevil (Anthonomus grandis). Direct submission, Bacillus thuringiensis toxin nomenclature.
  72. Martins ÉS, Aguiar RWS, Martins NF, Melatti VM, Falcão R, Gomes ACMM, Ribeiro BM, Monnerat RG (2008) Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol 104:1363–1371PubMedCrossRefGoogle Scholar
  73. Marvier MC, McCreedy C, Regetz J, Kareiva P, Duan JJ et al (2013); December 2013
  74. Meissle M, Knecht S, Waldburger M et al (2012) Sensitivity of the cereal leaf beetle Oulema melanopus (Coleoptera: Chrysomelidae) to Bt maize-expressed Cry3Bb1 and Cry1Ab. Arthropod Plant Interact 6:203. doi: 10.1007/s11829-011-9178-8 CrossRefGoogle Scholar
  75. McNeil BC, Dean DH (2011) Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: single D block exchanges reveal critical residues involved in activity. FEMS Microbiol Lett 325:16–21PubMedCrossRefGoogle Scholar
  76. Mettus AL, Baum JA (2000) Polypeptide compositions toxic to (Diabrotica) insects, obtained from Bacillus thuringiensis; CryET70, and methods of use. WIPO Patent WO 026378Google Scholar
  77. Meyer SK, Tabashnik BE, Liu YB, Wright MC, Federici BA (2001) Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of Diamondback moth (Plutella xylostella) and Pink bollworm (Pectinophora gossypiella). Appl Environ Microbiol 67:462–463PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park YS (1999) Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. Appl Environ Microbiol 86:477–486CrossRefGoogle Scholar
  79. Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32(3):555–563CrossRefGoogle Scholar
  80. Nagamatsu Y, Okamura S, Saitou H, Akao T, Mizuki E (2010) Three Cry toxins in two types from Bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells. Biosci Biotechnol Biochem 74:494–498PubMedCrossRefGoogle Scholar
  81. Naimov S, Weemen-Hendriks M, Dukiandjiev S, de Maagd RA (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl Environ Microbiol 67:5328–5330PubMedPubMedCentralCrossRefGoogle Scholar
  82. Narva KE, Payne JM, Schwab GE, Hickle LA, Galasan T, Sick AJ (1991) Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematode-active toxins cloned from Bacillus thuringiensis isolates. European Patent 0462721Google Scholar
  83. Narva KE, Schwab GE, Payne JM (1995) Gene encoding nematode-active toxin PS63B cloned from Bacillus thuringiensis isolate. US Patent 5439881Google Scholar
  84. Obrist LB, Klein H, Dutton A, Bigler F (2005) Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to prey-mediated Bt toxin. Entomol Exp Appl 115(3):409–416CrossRefGoogle Scholar
  85. Obrist LB et al (2006) Assessing the effects of Bt maize on the predatory mite Neoseiulus cucumeris. Exp Appl Acarol 38:125–139. Disponível em: <>
  86. Okumura S, Saitoh H, Ishikawa T, Wasano N, Yamashita S, Kusumoto K, Akao T, Mizuki E, Ohba M, Inouye K (2005) Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell lines. J Agric Food Chem 53:6313–6318PubMedCrossRefGoogle Scholar
  87. Oliveira AR et al (2007) Toxicological evaluation of genetically modified cotton (Bollgard®) and Dipel® WP on the non-target soil mite Scheloribates praeincisus (Acari: Oribatida). Exp Appl Acarol 41(3):191–201PubMedCrossRefGoogle Scholar
  88. Omolo EO, James MD, Osir EO, Thomson JA (1997) Cloning and expression of a Bacillus thuringiensis (L1-2) gene encoding a crystal protein active against Glossina morsitans and Chilo partellus. Curr Microbiol 34:118–121PubMedCrossRefGoogle Scholar
  89. Payne J, Narva K (1994) Novel Bacillus thuringiensis toxins active against corn rootworm larvae. WIPO Patent WO 94/16079Google Scholar
  90. Payne J, Narva KE, Uyeda KA, Stalder CJ, Michaels TE (1995) Bacillus thuringiensis isolate PS201T6 toxin. U.S. Patent 5436002Google Scholar
  91. Payne J, Narva K, Fu J (1996) Bacillus thuringiensis genes encoding nematode-active toxins. U.S. Patent 5589382Google Scholar
  92. Payne JM, Kennedy MK, Randall JB, Meier H, Uick HJ, Foncerrada L, Schnepf HE, Schwab GE, Fu J (1997) Bacillus thuringiensis toxins active against hymenopteran pests. U.S. Patent 96071Google Scholar
  93. Peng D, Chai L, Wang F, Zhang F, Ruan L, Sun M (2011) Synergistic activity between Bacillus thuringiensis Cry6Aa and Cry55Aa toxins against Meloidogyne incognita. Microb Biotechnol 4:794–798PubMedPubMedCentralCrossRefGoogle Scholar
  94. Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–18CrossRefGoogle Scholar
  95. Pilcher CD, Obrycki JJ, Rice ME, Lewis LC (1997) Pre-imaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ Entomol 26:446–454CrossRefGoogle Scholar
  96. Pons X et al (2004) No effects of Bt maize on the development of Orius majusculus. IOBC WPRS BULL 27(3):131–136Google Scholar
  97. Ponsard S, Gutierrez AP, Mills NJ (2002) Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators. Environ Entomol 31:1197–1120CrossRefGoogle Scholar
  98. Porcar M, Grenier A-M, Federici B, Rahbe Y (2009) Effects of Bacillus thuringiensis δ-endotoxins on the pea aphid (Acyrthosiphon pisum). Appl Environ Microbiol 78:4897–4900CrossRefGoogle Scholar
  99. Porcar M, Garcia-Robles I, Dominguez-Escriba L, Latorre A (2010) Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays. Bull Entomol Res 100:297–302PubMedCrossRefGoogle Scholar
  100. Prütz G, Dettner K (2004) Effect of Bt corn leaf suspension on food consumption by Chilo partellus and life history parameters of its parasitoid Cotesia flavipes under laboratory conditions. Entomol Exp Appl 111(3):179–187Google Scholar
  101. Ramirez-Romero R, Desneux N, Chauffaux J, Kaiser L (2008) Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera: Aphididae) and Cry1Ab toxin detection. Pestic Biochem Physiol 91:110–115CrossRefGoogle Scholar
  102. Rodrigo-Simon A, de Maagd RA, Avilla C, Bakker PL, Molthof J, Gonzalez-Zamora JE, Ferre J (2006) Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Appl Environ Microbiol 72:1595–1603PubMedPubMedCentralCrossRefGoogle Scholar
  103. Romeis J, Dutton A, Biggler F (2004) Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J Insect Physiol 50:175–183PubMedCrossRefGoogle Scholar
  104. Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephen ML (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci U S A 104:16204–16208PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ruiz de Escudero I, Estela A, Porcar M, Martinez C, Oguiza JA, Escriche B, Ferre J, Caballero P (2006) Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Appl Environ Microbiol 72:4796–4804PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rupar MJ, Donovan WP, Tan Y, Slaney AC (2000) Bacillus thuringiensis CryET29 composition toxic to coleopteran insects and Ctenocephalides spp. U.S. Patent 6093695Google Scholar
  107. Sampurna S, Maiti MK (2011) Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pests. J Microbiol Biotechnol 21:937–946CrossRefGoogle Scholar
  108. Saxena D, Stotzky G (2001) Bacillus thuringiensis toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biol Biochem 33:1225–1230CrossRefGoogle Scholar
  109. Sayyed AH, Crickmore N, Wright DJ (2001) Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the Diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol 67:5859–5861PubMedPubMedCentralCrossRefGoogle Scholar
  110. Schmidt JEU, Braun CU, Whitehouse LP, Hilbeck A (2009) Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing. Arch Environ Contam Toxicol 56:221–228PubMedCrossRefGoogle Scholar
  111. Schuler TH, Denholm I, Jouanin L, Clark SJ, Clark AJ, Poppy GM (2001) Population-scale laboratory studies of the effect of transgenic plants on nontarget insects. Mol Ecol 10(7):1845–1853Google Scholar
  112. Schuler TH et al (2003) Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Transgenic Res 12(3):351–361PubMedCrossRefGoogle Scholar
  113. Schuler TH et al (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Physiol 50(5):435–443PubMedCrossRefGoogle Scholar
  114. Shin B-S et al (1995) Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. entomocidus. Appl Environ Microbiol 61(6):2402–2407PubMedPubMedCentralGoogle Scholar
  115. Sick AJ, Schwab GE, Payne JM (1994) Genes encoding nematode-active toxins cloned from Bacillus thuringiensis isolates. U.S. Patent 5281530Google Scholar
  116. Sims SR (1995) Bacillus thuringiensis var. kurstaki [CryIA(c)] protein expressed in transgenic cotton: effects on beneficial and other non-target insects. Southwest Entomol 20(4):493–500Google Scholar
  117. Sims SR (1997) Host activity spectrum of the CryIIA Bacillus thuringiensis subsp. kurstaki protein: effects on Lepidoptera, Diptera, and non-target arthropods. Southwest Entomol 22:395–404Google Scholar
  118. Sims SR, Martin JW (1997) Effect of the Bacillus thuringiensis insecticidal proteins CryIA(b), CryIA(c), CryIIA, and CryIIIA on Folsomia candida and Xenylla grisea (Insecta: Collembola). Pedobiologia 41:412–416Google Scholar
  119. Smith GP, Merrick JD, Bone EJ, Ellar DJ (1996) Mosquitocidal activity of the CryIC δ-endotoxin from Bacillus thuringiensis subsp. aizawai. Appl Environ Microbiol 62:680–684PubMedPubMedCentralGoogle Scholar
  120. Stockhoff B, Conlan C (1998) Controlling hemipteran insects with Bacillus thuringiensis. U.S. Patent 5723440Google Scholar
  121. Tailor R, Tippett J, Gibb G, Pells S, Pike D, Jordan L, Ely S (1992) Identification and characterization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol 6:1211–1217PubMedCrossRefGoogle Scholar
  122. Tan F, Zhu J, Tang J, Tang X, Wang S, Zheng A, Li P (2009) Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Curr Microbiol 58:654–659PubMedCrossRefGoogle Scholar
  123. Tan F, Zheng A, Zhu J, Wang L, Li S, Qiming D, Wang S, Li P, Tang X (2010) Rapid cloning, identification, and application of one novel crystal protein gene cry30Fa1 from Bacillus thuringiensis. FEMS Microbiol Lett 302:46–51PubMedCrossRefGoogle Scholar
  124. Urban JF, Hu Y, Miller MM, Scheib U, Yiu YY, Aroian RV (2013) Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum. PLoS Negl Trop Dis 7(6):e2263. doi: 10.1371/journal.pntd.0002263 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 1–35Google Scholar
  126. Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis proteins. J Invertebr Pathol 101:1–16PubMedCrossRefGoogle Scholar
  127. Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85PubMedCrossRefGoogle Scholar
  128. Van Frankenhuyzen K, Tonon A (2013) Activity of Bacillus thuringiensis Cyt1Ba crystal protein against hymenopteran forest pests. J Invertebr Pathol 113:160–162PubMedCrossRefGoogle Scholar
  129. Vojtech E, Meissle M, Poppy GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res 14(2):133–144Google Scholar
  130. Walters FS, English LH (1995) Toxicity of Bacillus thuringiensis δ-endotoxins toward the potato aphid in an artificial diet bioassay. Entomol Exp Appl 77:211–216CrossRefGoogle Scholar
  131. Wang F, Liu Y, Zhang F, Chai L, Ruan L, Peng D, Sun M (2012a) Improvement of crystal solubility and increasing toxicity against Caenorhabditis elegans by asparagine substitution in block 3 of Bacillus thuringiensis crystal protein 5Ba. Appl Environ Microbiol 78(20):7197–7204PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wang Y, Li Y, Romeis J, Chen X, Zhang J, Chen H, Peng Y (2012b) Consumption of Bt rice pollen expressing Cry2Aa does not cause adverse effects on adult Chrysoperla sinica (Neuroptera: Chrysopidae). Biol Control 61:246–251CrossRefGoogle Scholar
  133. Wang Y, Li Y, Romeis J, Liu Q, Lin K, Chen X, Peng Y (2013) Bt rice expressing Cry2Aa does not cause direct detrimental effects on larvae of Chrysoperla sinica. Ecotoxicology 22(9):1413–1421PubMedCrossRefGoogle Scholar
  134. Warren GW (1997) Vegetative insecticidal proteins: novel proteins for control of corn pests. In: Carozzi NB, Koziel M (eds) Advances in insect control, the role of transgenic plants. Taylors and Francis Ltd., London, pp 109–121Google Scholar
  135. Wei J-Z, Hale K, Carta L, Platzer E, Wong C, Fang S-C, Aroian R (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wellman-Desbiens E, Côté J-C (2005) Development of Bacillus thuringiensis-based assay on Lygus hesperus. J Econ Entomol 98:1469–1479PubMedCrossRefGoogle Scholar
  137. Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093PubMedCrossRefGoogle Scholar
  138. Wu Y, Lei C-F, Yi D, Liu P-M, Gao M-Y (2011) Novel Bacillus thuringiensis δ-endotoxin active against Locusta migratoria manilensis. Appl Environ Microbiol 77:3227–3233PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yu L, Berry RE, Croft BA (1997) Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Orbatidae). J Econ Entomol 90(1):113–118Google Scholar
  140. Zhang G-F, Wan F-H, Murphy ST, Guo J-Y, Liu W-X (2008) Reproductive biology of two nontarget insect species, Aphis gossypii (Homoptera: Aphididae) and Orius sauteri (Hemiptera: Anthocoridae) on Bt and non-Bt cotton cultivars. Environ Entomol 37:1035–1042PubMedCrossRefGoogle Scholar
  141. Zhang G-f et al (2006) Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ Entomol 35(1):143–150CrossRefGoogle Scholar
  142. Zhang B, Chen M, Zhang X et al (2011) Expression of Bt-Cry3A in transgenic Populus alba × P. glandulosa and its effects on target and non-target pests and the arthropod community. Transgenic Res 20:523. doi: 10.1007/s11248-010-9434-1 PubMedCrossRefGoogle Scholar
  143. Zhong C, Ellar DJ, Bishop A, Johnson C, Lin S, Hart ER (2000) Characterization of a Bacillus thuringiensis δ-endotoxin which is toxic to insects in three orders. J Invertebr Pathol 76:131–139PubMedCrossRefGoogle Scholar
  144. Zhu J, Zheng A, Wang S, Liu H, Li P (2010a) Characterization and expression of cry4Cb1 and cry30Ga1 from Bacillus thuringiensis strain HS18-1. J Invertebr Pathol 103:200–202PubMedCrossRefGoogle Scholar
  145. Zhu J, Zheng AP, Tan FR, Wang SQ, Deng QM, Li SC, Wang LX, Li P (2010b) Characterization and expression of a novel holotype crystal protein gene, cry56Aa1, from Bacillus thuringiensis strain Ywc2-8. Biotechnol Lett 32:283–288PubMedCrossRefGoogle Scholar
  146. Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol 3:765–775CrossRefGoogle Scholar
  147. Zwahlen C, Netntwig W, Bigler F, Hlbeck A (2000) Tritrophic interactions of transgenic Bacillus thuringiensis corn Anophothrips obscurus (Thysanoptera: Thripidae), and predator Orius majusculus (Heteroptera: Anthocoridae). Environ Entomol Coll Park 29(4):846–850CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Great Lakes Forestry Centre, Canadian Forest ServiceSault Ste. MarieCanada

Personalised recommendations