A Fresh Look at Growth Oscillations in Pollen Tubes: Kinematic and Mechanistic Descriptions

  • Milenka Van Hemelryck
  • Roberto Bernal
  • Enrique Rojas
  • Jacques Dumais
  • Jens H. Kroeger
Chapter

Abstract

Pollen tubes exhibit rapid polar growth that can display either stationary (steady) or oscillatory elongation rates. The oscillatory mode of growth provides a window into the network of interactions regulating the morphogenesis of these cells. Empirical studies of oscillatory pollen tube growth have sought to uncover the sequence of cellular events that constitute one oscillatory cycle, while other studies have attempted to formalise the principal causal interactions into computational feedback models. In this chapter, we first review the phenomenon of oscillatory tip growth from a kinematic standpoint. Three key kinematic features have emerged from our analysis: (1) oscillatory cells dominate at high elongation rates, (2) well-defined symmetrical and asymmetrical modes of oscillation are observed, and (3) the oscillation cycle of most pollen tubes unfolds over a fairly well-defined distance, independently of the average elongation rate. We then discuss some mechanistic models aiming to explain oscillatory growth and evaluate their ability to account for the observed kinematic features. Although some of these models have reached a fairly high degree of sophistication, none account for the whole range of kinematic behaviour reported in pollen tubes. We conclude with some suggestions of how current models could be improved.

Keywords

Pollen tube growth Oscillations Modelling 

References

  1. Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8CrossRefGoogle Scholar
  2. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cárdenas L, McKenna ST, Hepler PK (2006) NAD(P)H oscillates in pollen tubes and is correlated with tip growth. Plant Physiol 142:1460–1468CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chebli Y, Geitmann A (2007) Mechanical principles governing pollen tube growth. Funct Plant Sci Biotechnol 1:232–245Google Scholar
  6. Dumais J, Long SR, Shaw SL (2004) The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiol 136:3266–3275CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209–222CrossRefPubMedGoogle Scholar
  8. Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496CrossRefPubMedPubMedCentralGoogle Scholar
  11. Feijó JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94CrossRefPubMedGoogle Scholar
  12. Geitmann A, Parre E (2004) The local cytomechanical properties of growing pollen tubes correspond to the axial distribution of structural cellular elements. Sex Plant Reprod 17:9–16CrossRefGoogle Scholar
  13. Geitmann A, Li YQ, Cresti M (1996) The role of the cytoskeleton and Dictyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida pollen tubes. Bot Acta 109:102–109CrossRefGoogle Scholar
  14. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, New YorkCrossRefGoogle Scholar
  15. Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behavior. Cambridge University Press, New YorkCrossRefGoogle Scholar
  16. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92CrossRefPubMedGoogle Scholar
  17. Hepler PK, Lovy-Wheeler A, McKenna ST, Kunkel JG (2006) Ions and pollen tube growth. In: Malho R (ed) The pollen tube, Plant cell monographs, vol 3. Springer, Berlin, pp 47–69Google Scholar
  18. Hill A, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS One 7:e36585Google Scholar
  19. Holdaway-Clark TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9:1999–2010CrossRefGoogle Scholar
  20. Hwang J-U, Gu Y, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399CrossRefPubMedPubMedCentralGoogle Scholar
  21. Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kovar DR, Drøbak BK, Staiger CJ (2000) Maize profilin isoforms are functionally distinct. Plant Cell 12:583–598CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kroeger JH, Geitmann A (2013) Pollen tubes with more viscous cell walls oscillate at lower frequencies. Math Model Nat Phenom 8:25–34CrossRefGoogle Scholar
  24. Kroeger JH, Geitmann A, Grant M (2008) Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 253:363–374CrossRefPubMedGoogle Scholar
  25. Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6:e18549Google Scholar
  26. Lassig R, Gutermuth T, Bey T, Konrad KR, Romeis T (2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106CrossRefPubMedGoogle Scholar
  27. Liu J, Hussey PJ (2014) Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. Front Plant Sci 5:392PubMedPubMedCentralGoogle Scholar
  28. Liu J, Piette BMAG, Deeks MJ, Franklin-Tong VE, Hussey PJ (2010) A compartmental model analysis of integrative and self-regulatory ion dynamics in pollen tube growth. PLoS One 5:e13157Google Scholar
  29. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275CrossRefPubMedGoogle Scholar
  30. Lopez-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci USA 91:12228–12232CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK (2006) Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18:2182–2193CrossRefPubMedPubMedCentralGoogle Scholar
  32. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vivaldi L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040CrossRefPubMedPubMedCentralGoogle Scholar
  33. Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110:1269–1278PubMedGoogle Scholar
  34. Messerli MA, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509PubMedGoogle Scholar
  35. Messerli MA, Creton R, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98CrossRefPubMedGoogle Scholar
  36. Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extra-cellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104:20996–21001CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nobel PS (2009) Physicochemical and environmental plant physiology. Academic Press, LondonGoogle Scholar
  38. Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991CrossRefPubMedPubMedCentralGoogle Scholar
  39. O’Neill M, Albersheim P, Darvill AG (1990) The pectic polysaccharides of primary cell walls. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, carbohydrates. Academic Press, London, pp 415–441Google Scholar
  40. Ortega JKE (1990) Governing equations for plant cell growth. Physiol Plant 79:116–121CrossRefGoogle Scholar
  41. Parton RM, Fischer-Parton S, Trewavas AJ, Watahiki MK (2003) Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J Cell Sci 116:2707–2719CrossRefPubMedGoogle Scholar
  42. Pierson ES, Li YQ, Zhang HQ, Willemse MTM, Linskens HF, Cresti M (1995) Pulsatory growth of pollen tubes: investigation of a possible relationship with the periodic distribution of cell wall components. Acta Bot Neerl 44:121–128CrossRefGoogle Scholar
  43. Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160173CrossRefGoogle Scholar
  44. Pietruszka M (2013) Pressure induced cell wall instability and growth oscillations in pollen tubes. PLoS One 8:e75803Google Scholar
  45. Portes MT, Santa Cruz Damineli D, Moreno N, Colaco R, Costa S, Feijo JA (2015) The pollen tube oscillator: integrating biophysics and biochemistry into cellular growth and morphogenesis. In: Mancuso S, Shabala S (eds) Rhythms in plants: dynamic responses in a dynamic environment. Springer, BerlinGoogle Scholar
  46. Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95:967–979CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rojas E, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853CrossRefPubMedPubMedCentralGoogle Scholar
  48. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  49. Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358CrossRefGoogle Scholar
  50. Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C, Routier-Kierzkowska A-L, Boisson-Dernier A, Ringli C, Nelson BJ, Smith RS, Grossniklaus U (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627CrossRefPubMedGoogle Scholar
  51. Weisenseel MH, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567CrossRefPubMedGoogle Scholar
  52. Williams JH, Edwards JA, Ramsey AJ (2016) Economy, efficiency, and the evolution of pollen tube growth rates. Am J Bot 103:471–483CrossRefPubMedGoogle Scholar
  53. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell wall set the space. Trends Plant Sci 15:363–369CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yan A, Xu G, Yang ZB (2009) Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA 106:22002–22007CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yokota E, Shimmen T (2006) The actin cytoskeleton in pollen tubes: actin and actin binding proteins. Plant Cell Monogr 3:139–155CrossRefGoogle Scholar
  56. Zerzour R, Kroeger JH, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanics properties. Dev Biol 334:437–446CrossRefPubMedGoogle Scholar
  57. Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873CrossRefPubMedGoogle Scholar
  58. Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Milenka Van Hemelryck
    • 1
  • Roberto Bernal
    • 1
  • Enrique Rojas
    • 2
  • Jacques Dumais
    • 3
  • Jens H. Kroeger
    • 4
  1. 1.Universidad de Santiago de ChileSantiagoChile
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Universidad Adolfo IbáñezViña del Mar, Region VChile
  4. 4.Raymor Nanotech, BoisbriandQuébecCanada

Personalised recommendations