Advertisement

Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps

  • Prabhanjan Ananth
  • Amit Sahai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10210)

Abstract

In this work, we propose a variant of functional encryption called projective arithmetic functional encryption (PAFE). Roughly speaking, our notion is like functional encryption for arithmetic circuits, but where secret keys only yield partially decrypted values. These partially decrypted values can be linearly combined with known coefficients and the result can be tested to see if it is a small value.

We give a degree-preserving construction of PAFE from multilinear maps. That is, we show how to achieve PAFE for arithmetic circuits of degree d using only degree-d multilinear maps. Our construction is based on an assumption over such multilinear maps, that we justify in a generic model. We then turn to applying our notion of PAFE to one of the most pressing open problems in the foundations of cryptography: building secure indistinguishability obfuscation (\(\mathsf {i}\mathcal {O}\)) from simpler building blocks.

\(\mathsf {i}\mathcal {O}\) from degree-5 multilinear maps. Recently, the works of Lin [Eurocrypt 2016] and Lin-Vaikuntanathan [FOCS 2016] showed how to build \(\mathsf {i}\mathcal {O}\) from constant-degree multilinear maps. However, no explicit constant was given in these works, and an analysis of these published works shows that the degree requirement would be in excess of 30. The ultimate “dream” goal of this line of work would be to reduce the degree requirement all the way to 2, allowing for the use of well-studied bilinear maps, or barring that, to a low constant that may be supportable by alternative secure low-degree multilinear map candidates. We make substantial progress toward this goal by showing how to leverage PAFE for degree-5 arithmetic circuits to achieve \(\mathsf {i}\mathcal {O}\), thus yielding the first \(\mathsf {i}\mathcal {O}\) construction from degree-5 multilinear maps.

Keywords

Leaf Node Arithmetic Circuit Constant Degree Encryption Complexity Partial Decryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_35 Google Scholar
  2. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_21 CrossRefGoogle Scholar
  3. Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_33 Google Scholar
  4. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. IACR Cryptology ePrint Archive 2016:11 (2016)Google Scholar
  5. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_32 CrossRefGoogle Scholar
  6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Compl. 15(2), 115–162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  8. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive 2015:730 (2015)Google Scholar
  9. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: STOC, pp. 1087–1100 (2016)Google Scholar
  10. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint Archive, Report 2016/1097 (2016). http://eprint.iacr.org/2016/1097
  11. Elisabetta, C., Baltico, Z., Catalano, D., Fiore, D.: Practical functional encryption for bilinear forms. Cryptology ePrint Archive, Report 2016/1104 (2016). http://eprint.iacr.org/2016/1104
  12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and Compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_30 CrossRefGoogle Scholar
  13. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  14. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: ITCS 2016Google Scholar
  15. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_20 CrossRefGoogle Scholar
  16. Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from functional encryption. Cryptology ePrint Archive, Report 2016/962, 2016 http://eprint.iacr.org/2016/962
  17. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. Cryptology ePrint Archive, Report 2016/558 (2016). http://eprint.iacr.org/2016/558
  18. Boneh, D., Nikolaenko, V., Segev, G.: Attribute-based encryption for arithmetic circuits. IACR Cryptology ePrint Archive 2013:669 (2013)Google Scholar
  19. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_16 CrossRefGoogle Scholar
  20. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a Nash equilibrium. In: FOCS (2015)Google Scholar
  21. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_12 CrossRefGoogle Scholar
  22. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE (S&P 2007), pp. 321–334 (2007)Google Scholar
  23. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: FOCS, IEEE (2015)Google Scholar
  24. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_12 CrossRefGoogle Scholar
  25. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_1 Google Scholar
  26. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016)Google Scholar
  27. Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_29 CrossRefGoogle Scholar
  28. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_26 CrossRefGoogle Scholar
  29. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  30. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_7 CrossRefGoogle Scholar
  31. Gay, R.: Functional encryption for quadratic functions, and applications to predicate encryption. Cryptology ePrint Archive, Report 2016/1106 (2016). http://eprint.iacr.org/2016/1106
  32. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  33. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  35. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_20 CrossRefGoogle Scholar
  36. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_4 CrossRefGoogle Scholar
  37. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. IACR Cryptology ePrint Archive 2014:622 (2014)Google Scholar
  38. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS, pp. 151–170 (2015)Google Scholar
  39. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. Cryptology ePrint Archive, Report 2016/817 (2016). http://eprint.iacr.org/2016/817
  40. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006)Google Scholar
  42. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_24 CrossRefGoogle Scholar
  43. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_12 CrossRefGoogle Scholar
  44. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)Google Scholar
  45. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  46. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_2 CrossRefGoogle Scholar
  47. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  48. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In FOCS (2016)Google Scholar
  49. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_22 CrossRefGoogle Scholar
  50. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85538-5_4 CrossRefGoogle Scholar
  51. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_13 CrossRefGoogle Scholar
  52. O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: CCC, pp. 1–12 (2014)Google Scholar
  53. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  54. Sahai, A., Waters, B.: Slides on functional encryption. Powerpoint presentation (2008)Google Scholar
  55. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In STOC, pp. 475–484 (2014)Google Scholar
  56. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  57. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.Center for Encrypted Functionalities and Department of Computer ScienceUCLALos AngelesUSA

Personalised recommendations