Advertisement

Multi-input Inner-Product Functional Encryption from Pairings

  • Michel Abdalla
  • Romain GayEmail author
  • Mariana Raykova
  • Hoeteck Wee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10210)

Abstract

We present a multi-input functional encryption scheme (MIFE) for the inner product functionality based on the k-Lin assumption in prime-order bilinear groups. Our construction works for any polynomial number of encryption slots and achieves adaptive security against unbounded collusion, while relying on standard polynomial hardness assumptions. Prior to this work, we did not even have a candidate for 3-slot MIFE for inner products in the generic bilinear group model. Our work is also the first MIFE scheme for a non-trivial functionality based on standard cryptographic assumptions, as well as the first to achieve polynomial security loss for a super-constant number of slots under falsifiable assumptions. Prior works required stronger non-standard assumptions such as indistinguishability obfuscation or multi-linear maps.

Keywords

Ideal Functionality Security Proof Challenge Ciphertext Bilinear Group Adaptive Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. 1.
    Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_33 Google Scholar
  2. 2.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive, Report 2016/011 (2016). http://eprint.iacr.org/2016/011
  3. 3.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_28 CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53015-3_12 CrossRefGoogle Scholar
  5. 5.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  6. 6.
    Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_2 CrossRefGoogle Scholar
  7. 7.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_20 CrossRefGoogle Scholar
  8. 8.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015Google Scholar
  9. 9.
    Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_23 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_19 Google Scholar
  11. 11.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_30 CrossRefGoogle Scholar
  13. 13.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_7 CrossRefGoogle Scholar
  14. 14.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  17. 17.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  18. 18.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_1 CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013Google Scholar
  21. 21.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_11 CrossRefGoogle Scholar
  22. 22.
    Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016). http://eprint.iacr.org/2016/440
  23. 23.
    Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilinear maps. Cryptology ePrint Archive, Report 2016/432 (2016). http://eprint.iacr.org/2016/432
  24. 24.
    Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: ACM CCS 2010, pp. 463–472. ACM Press, October 2010Google Scholar
  25. 25.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_36 CrossRefGoogle Scholar
  27. 27.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_26 CrossRefGoogle Scholar
  28. 28.
    Wee, H.: New techniques for attribute-hiding in prime-order bilinear groups (2016, in preparation)Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Romain Gay
    • 1
    Email author
  • Mariana Raykova
    • 2
  • Hoeteck Wee
    • 1
  1. 1.ENS and PSL Research UniversityParisFrance
  2. 2.Yale UniversityNew HavenUSA

Personalised recommendations