New Impossible Differential Search Tool from Design and Cryptanalysis Aspects

Revealing Structural Properties of Several Ciphers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10212)

Abstract

In this paper, a new tool searching for impossible differentials is presented. Our tool can detect any contradiction between input and output differences. It can also take into account the property inside the S-box when its size is small e.g. 4 bits. This is natural for ciphers with bit-wise diffusion like PRESENT, while finding such impossible differentials for ciphers with word-wise diffusion is novel. In addition, several techniques are proposed to evaluate 8-bit S-box. The tool improves the number of rounds of impossible differentials from the previous best results for Midori128, Lilliput, and Minalpher. The tool also finds new impossible differentials for ARIA and MIBS. We manually verify the impossibility of the searched results, which reveals new structural properties of those designs. The tool can be implemented by slightly modifying the previous differential search tool using Mixed Integer Linear Programming (MILP). This motivates us to discuss the usage of our tool particular for the design process. With this tool, the maximum number of rounds of impossible differentials can be proven under reasonable assumptions and the tool is applied to various concrete designs.

Keywords

Symmetric-key Impossible differential Mixed integer linear programming Midori Lilliput Minalpher ARIA MIBS 

References

  1. 1.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34704-7_5 CrossRefGoogle Scholar
  2. 2.
    Knudsen, L.: DEAL - a 128-bit block cipher. Technical report no. 151, Department of Informatics, University of Bergen, Norway (1998)Google Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_2 Google Scholar
  4. 4.
    Biryukov, A.: Miss-in-the-middle attack. In: van Tilborg, H.C.A. (ed.) Encyclopedia of Cryptography and Security. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24582-7_6 CrossRefGoogle Scholar
  6. 6.
    Luo, Y., Wu, Z., Lai, X., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Cryptology ePrint Archive, report 2009/627 (2009)Google Scholar
  7. 7.
    Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014)CrossRefMATHGoogle Scholar
  8. 8.
    Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7_17 CrossRefGoogle Scholar
  9. 9.
    Tezcan, C.: Improbable differential attacks on present using undisturbed bits. J. Comput. Appl. Math. 259, 503–511 (2014)CrossRefMATHGoogle Scholar
  10. 10.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Cryptology ePrint Archive, report 2014/084 (2014). http://eprint.iacr.org/2014/084
  11. 11.
    Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossible differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 157–184. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_6 CrossRefGoogle Scholar
  12. 12.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_9
  13. 13.
    Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. IACR Cryptology ePrint Archive 2014/747 (2014)Google Scholar
  14. 14.
    Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput: block cipher with extended generalized Feistel network. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS. Springer, Cham (2016)Google Scholar
  15. 15.
    Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Constructing mixed-integer programming models whose feasible region is exactly the set of all valid differential characteristics of SIMON. Cryptology ePrint Archive, report 2015/122 (2015). http://eprint.iacr.org/2015/122
  16. 16.
    Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_17 CrossRefGoogle Scholar
  17. 17.
    Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput. IEEE Trans. Comput. 65, 2074–2089 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M.: Minalpher v1.1. Submitted to CAESAR (2015)Google Scholar
  19. 19.
    Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24691-6_32 CrossRefGoogle Scholar
  20. 20.
    Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new lightweight block cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6_22 CrossRefGoogle Scholar
  21. 21.
    Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impossible differentials and zero-correlation linear approximations. Cryptology ePrint Archive, report 2016/689 (2016). http://eprint.iacr.org/2016/689
  22. 22.
    Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_5 CrossRefGoogle Scholar
  23. 23.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31
  24. 24.
    Gurobi Optimization, Inc.: Gurobi optimizer 6.5 (2015). http://www.gurobi.com/
  25. 25.
    Guo, J., Jean, J., Nikolić, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace attack against full Midori64. Cryptology ePrint Archive, report 2015/1189 (2015). http://eprint.iacr.org/2015/1189
  26. 26.
    Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack on full SCREAM, iSCREAM, and Midori64. Cryptology ePrint Archive, report 2016/732 (2016). http://eprint.iacr.org/2016/732
  27. 27.
    Zhan, C., Xiaoyun, W.: Impossible differential cryptanalysis of Midori. Cryptology ePrint Archive, report 2016/535 (2016). http://eprint.iacr.org/2016/535
  28. 28.
    Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7_15 CrossRefGoogle Scholar
  29. 29.
    Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)CrossRefGoogle Scholar
  30. 30.
    Li, R., Sun, B., Zhang, P., Li, C.: New impossible differential cryptanalysis of ARIA. Cryptology ePrint Archive, report 2008/227 (2008). http://eprint.iacr.org/2008/227
  31. 31.
    Bay, A., Nakahara Jr., J., Vaudenay, S.: Cryptanalysis of reduced-round MIBS block cipher. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 1–19. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17619-7_1 CrossRefGoogle Scholar
  32. 32.
    Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1_9 CrossRefGoogle Scholar
  33. 33.
    Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7_19 CrossRefGoogle Scholar
  34. 34.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, report 2013/404 (2013). http://eprint.iacr.org/2013/404
  35. 35.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6_22 CrossRefGoogle Scholar
  36. 36.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21554-4_19 CrossRefGoogle Scholar
  37. 37.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_23 CrossRefGoogle Scholar
  38. 38.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5_12 CrossRefGoogle Scholar
  39. 39.
    Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-52993-5_14 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.NTT Secure Platform Laboratories3-9-11 Midori-cho, Musashino-shiTokyoJapan

Personalised recommendations