Advertisement

Functional Encryption: Deterministic to Randomized Functions from Simple Assumptions

  • Shashank Agrawal
  • David J. Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10211)

Abstract

Functional encryption (FE) enables fine-grained control of sensitive data by allowing users to only compute certain functions for which they have a key. The vast majority of work in FE has focused on deterministic functions, but for several applications such as privacy-aware auditing, differentially-private data release, proxy re-encryption, and more, the functionality of interest is more naturally captured by a randomized function. Recently, Goyal et al. (TCC 2015) initiated a formal study of FE for randomized functionalities with security against malicious encrypters, and gave a selectively secure construction from indistinguishability obfuscation. To date, this is the only construction of FE for randomized functionalities in the public-key setting. This stands in stark contrast to FE for deterministic functions which has been realized from a variety of assumptions.

Our key contribution in this work is a generic transformation that converts any general-purpose, public-key FE scheme for deterministic functionalities into one that supports randomized functionalities. Our transformation uses the underlying FE scheme in a black-box way and can be instantiated using very standard number-theoretic assumptions (for instance, the DDH and RSA assumptions suffice). When applied to existing FE constructions, we obtain several adaptively-secure, public-key functional encryption schemes for randomized functionalities with security against malicious encrypters from many different assumptions such as concrete assumptions on multilinear maps, indistinguishability obfuscation, and in the bounded-collusion setting, the existence of public-key encryption, together with standard number-theoretic assumptions.

Additionally, we introduce a new, stronger definition for malicious security as the existing one falls short of capturing an important class of correlation attacks. In realizing this definition, our compiler combines ideas from disparate domains like related-key security for pseudorandom functions and deterministic encryption in a novel way. We believe that our techniques could be useful in expanding the scope of new variants of functional encryption (e.g., multi-input, hierarchical, and others) to support randomized functionalities.

Keywords

Generic Transformation Challenge Ciphertext Decryption Oracle Challenge Phase Security Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Venkata Koppula for many helpful conversations and discussions related to this work. We also thank the anonymous reviewers for useful feedback on the presentation.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseudorandom functions and applications to related-key security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 388–409. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_19 CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_5 CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_35 Google Scholar
  4. 4.
    Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: towards a unified theory of computing on encrypted data. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 501–531. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_17 Google Scholar
  5. 5.
    Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional encryption even with random oracles. Cryptology ePrint Archive, Report 2016/959 (2016). http://eprint.iacr.org/2016/959
  6. 6.
    Agrawal, S., Wu, D.J.: Functional encryption: Deterministic to randomized functions from simple assumptions. Cryptology ePrint Archive, Report 2016/482 (2016). http://eprint.iacr.org/2016/482
  7. 7.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_28 CrossRefGoogle Scholar
  8. 8.
    Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wilson, D.A.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: IMA International Conference on Cryptography and Coding (2013)Google Scholar
  9. 9.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://eprint.iacr.org/2013/689
  10. 10.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_32 CrossRefGoogle Scholar
  11. 11.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_21 CrossRefGoogle Scholar
  12. 12.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006). doi: 10.1145/1127345.1127346 CrossRefzbMATHGoogle Scholar
  14. 14.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_13 CrossRefGoogle Scholar
  15. 15.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  16. 16.
    Barbosa, M., Farshim, P.: On the semantic security of functional encryption schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 143–161. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36362-7_10 CrossRefGoogle Scholar
  17. 17.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74143-5_30 CrossRefGoogle Scholar
  18. 18.
    Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_36 CrossRefGoogle Scholar
  19. 19.
    Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25385-0_26 CrossRefGoogle Scholar
  20. 20.
    Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption: definitional equivalences and constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_20 CrossRefGoogle Scholar
  21. 21.
    Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_21 Google Scholar
  22. 22.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_31 CrossRefGoogle Scholar
  23. 23.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Cham (2013). doi: 10.1007/978-3-319-02937-5_12 CrossRefGoogle Scholar
  24. 24.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (2007)Google Scholar
  25. 25.
    Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994). doi: 10.1007/3-540-48285-7_34 Google Scholar
  26. 26.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approximate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 67–95. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_4 CrossRefGoogle Scholar
  27. 27.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). doi: 10.1007/BFb0054122 Google Scholar
  28. 28.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: ACM STOC (1988)Google Scholar
  29. 29.
    Boneh, D.: The decision Die-Hellman problem. In: Third Algorithmic Number Theory Symposium (ANTS), vol. 1423 (1998). Invited paperGoogle Scholar
  30. 30.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46(2), 203–213 (1999)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_13 CrossRefGoogle Scholar
  32. 32.
    Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing encryption: multi-input functional encryption without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_19 Google Scholar
  33. 33.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_26 CrossRefGoogle Scholar
  34. 34.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42033-7_14 CrossRefGoogle Scholar
  35. 35.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  36. 36.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryptology ePrint Archive, Report 2002/080 (2002). http://eprint.iacr.org/2002/080
  37. 37.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29 CrossRefGoogle Scholar
  38. 38.
    Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.iacr.org/2014/930
  39. 39.
    Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical functional encryption. In: ITCS (2017)Google Scholar
  40. 40.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_1 CrossRefGoogle Scholar
  41. 41.
    Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption: the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 543–560. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_31 CrossRefGoogle Scholar
  42. 42.
    Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_20 CrossRefGoogle Scholar
  43. 43.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_1 Google Scholar
  44. 44.
    Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without a low level encoding of zero. Cryptology ePrint Archive, Report 2016/139 (2016). http://eprint.iacr.org/2016/139
  45. 45.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi: 10.1007/3-540-45325-3_32 CrossRefGoogle Scholar
  46. 46.
    Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_12 CrossRefGoogle Scholar
  47. 47.
    Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_21 CrossRefGoogle Scholar
  48. 48.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_26 CrossRefGoogle Scholar
  49. 49.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_13 CrossRefGoogle Scholar
  50. 50.
    De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: CRYPTO (2013)Google Scholar
  51. 51.
    Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_21 CrossRefGoogle Scholar
  52. 52.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: FOCS (1990)Google Scholar
  54. 54.
    Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: new constructions and a connection to computational entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28914-9_33 CrossRefGoogle Scholar
  55. 55.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)Google Scholar
  56. 56.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  57. 57.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: ACM STOC (2013)Google Scholar
  58. 58.
    Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_24 CrossRefGoogle Scholar
  59. 59.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS (2015)Google Scholar
  60. 60.
    Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1. Cambridge University Press, Cambridge (2001)Google Scholar
  61. 61.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  62. 62.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: ACM STOC (2013)Google Scholar
  63. 63.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_11 CrossRefGoogle Scholar
  64. 64.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: ACM STOC (2013)Google Scholar
  65. 65.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_13 CrossRefGoogle Scholar
  66. 66.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006). Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  67. 67.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). doi: 10.1007/11935230_29 CrossRefGoogle Scholar
  68. 68.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). doi: 10.1007/11761679_21 CrossRefGoogle Scholar
  69. 69.
    Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_21 CrossRefGoogle Scholar
  70. 70.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS (2000)Google Scholar
  71. 71.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  72. 72.
    Knudsen, L.R.: Cryptanalysis of LOKI 91. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993). doi: 10.1007/3-540-57220-1_62 CrossRefGoogle Scholar
  73. 73.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_13 CrossRefGoogle Scholar
  74. 74.
    Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Cham (2014). doi: 10.1007/978-3-319-07536-5_4 Google Scholar
  75. 75.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  76. 76.
    Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25937-4_23 CrossRefGoogle Scholar
  77. 77.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_22 CrossRefGoogle Scholar
  78. 78.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  79. 79.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  80. 80.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_28 CrossRefGoogle Scholar
  81. 81.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). doi: 10.1007/3-540-46766-1_35 Google Scholar
  82. 82.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: ACM CCS (2010)Google Scholar
  84. 84.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  85. 85.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  86. 86.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48000-7_33 CrossRefGoogle Scholar
  87. 87.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.Visa ResearchPalo AltoUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations