Integration of the Scientific Recommender System Mr. DLib into the Reference Manager JabRef

  • Stefan Feyer
  • Sophie Siebert
  • Bela Gipp
  • Akiko Aizawa
  • Joeran BeelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10193)


This paper presents a description of integration of the Mr. DLib scientific recommender system into the JabRef reference manager. Scientific recommender systems help users identify relevant papers out of vast amounts of existing literature. They are particularly useful when used in combination with reference managers. Over 85% of JabRef users stated that they would appreciate the integration of a recommender system. However, the implementation of literature recommender systems requires experience and resources that small companies cannot afford. With the desires of users in mind, we integrated the Mr. DLib scientific recommender system into JabRef. Using Mr. DLib’s recommendations-as-a-service, JabRef users can find relevant literature and keep themselves informed about the state of the art in their respective fields.


IR Scientific recommender system Reference manager Recommendations-as-a-service 



This publication has derived from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 13/RC/2106. We are also grateful for support received by Siddharth Dinesh and the JabRef Team: Oliver Kopp, Simon Harrer, Joerg Lenhard, Stefan Kolb, Matthias Geiger, Oscar Gustafsson, Tobias Diez, and Christoph Schwentker.


  1. 1.
    Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. (UMUAI) 26(1), 69–101 (2016)CrossRefGoogle Scholar
  2. 2.
    Beel, J., Gipp, B., Langer, S., Genzmehr, M., Wilde, E., Nürnberger, A., Pitman, J.: Introducing Mr. DLib, a machine-readable digital library. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 463–464. ACM (2011)Google Scholar
  3. 3.
    Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In: Kapidakis, S., Mazurek, C., Werla, M. (eds.) TPDL 2015. LNCS, vol. 9316, pp. 153–168. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24592-8_12 CrossRefGoogle Scholar
  4. 4.
    Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Introducing Docear’s research paper recommender system. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries - JCDL 2013, p. 459 (2013)Google Scholar
  5. 5.
    Knoth, P.: Linking textual resources to support information discovery. Ph.D. thesis, The Open University (2015)Google Scholar
  6. 6.
    Mönnich, M., Spiering, M.: Erschließung. Einsatz von BibTip als Recommendersystem im Bibliothekskatalog. Bibliotheksdienst 42(1), 54–59 (2008)CrossRefGoogle Scholar
  7. 7.
    Wesley-Smith, I., West, J.D.: Babel: a platform for facilitating research in scholarly article discovery. In: Proceedings of the 25th International Conference Companion on the World Wide Web, pp. 389–393 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Feyer
    • 1
  • Sophie Siebert
    • 2
  • Bela Gipp
    • 1
  • Akiko Aizawa
    • 3
  • Joeran Beel
    • 3
    • 4
    Email author
  1. 1.University of KonstanzKonstanzGermany
  2. 2.Otto-von-Guericke University MagdeburgMagdeburgGermany
  3. 3.National Institute of Informatics (NII)TokyoJapan
  4. 4.Trinity College Dublin, SCSS, KDEG, ADAPT CentreDublinIreland

Personalised recommendations