Predicting Users’ Future Interests on Twitter

  • Fattane Zarrinkalam
  • Hossein Fani
  • Ebrahim Bagheri
  • Mohsen Kahani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10193)

Abstract

In this paper, we address the problem of predicting future interests of users with regards to a set of unobserved topics in microblogging services which enables forward planning based on potential future interests. Existing works in the literature that operate based on a known interest space cannot be directly applied to solve this problem. Such methods require at least a minimum user interaction with the topic to perform prediction. To tackle this problem, we integrate the semantic information derived from the Wikipedia category structure and the temporal evolution of user’s interests into our prediction model. More specifically, to capture the temporal behaviour of the topics and user’s interests, we consider discrete intervals and build user’s topic profile in each time interval separately. Then, we generalize users’ interests that have been observed over several time intervals by transferring them over the Wikipedia category structure. Our approach not only allows us to generalize users’ interests but also enables us to transfer users’ interests across different time intervals that do not necessarily have the same set of topics. Our experiments illustrate the superiority of our model compared to the state of the art.

References

  1. 1.
    Abel, F., Gao, Q., Houben, G., Tao, K.: Analyzing temporal dynamics in Twitter profiles for personalized recommendations in the social web. In: WebSci 2011, pp. 2:1–2:8 (2011)Google Scholar
  2. 2.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on Twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22362-4_1 CrossRefGoogle Scholar
  3. 3.
    Bao, H., Li, Q., Liao, S.S., Song, S., Gao, H.: A new temporal and social pmf-based method to predict users’ interests in micro-blogging. Decis. Support Syst. 55(3), 698–709 (2013)CrossRefGoogle Scholar
  4. 4.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  5. 5.
    Cheekula, S.K., Kapanipathi, P., Doran, D., Jain, P., Sheth, A.P.: Entity recommendations using hierarchical knowledge bases. In: ESWC 2015 (2015)Google Scholar
  6. 6.
    Cheng, X., Yan, X., Lan, Y., Guo, J.: BTM: topic modeling over short texts. IEEE Trans. Knowl. Data Eng. 26(12), 2928–2941 (2014)CrossRefGoogle Scholar
  7. 7.
    Dahleh, M., Dahleh, M.A., Verghese, G.: Lectures on dynamic systems and control. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2013)Google Scholar
  8. 8.
    Ding, Y., Li, X.: Time weight collaborative filtering. In: International Conference on Information and Knowledge Management, pp. 485–492 (2005)Google Scholar
  9. 9.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on Twitter using a hierarchical knowledge base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 99–113. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6_8 CrossRefGoogle Scholar
  10. 10.
    Kapanipathi, P., Orlandi, F., Sheth, A.P., Passant, A.: Personalized filtering of the Twitter stream. In: The Second Workshop on Semantic Personalized Information Management: Retrieval and Recommendation 2011, pp. 6–13 (2011)Google Scholar
  11. 11.
    Khrouf, H., Troncy, R.: Hybrid event recommendation using linked data and user diversity. In: RecSys 2013, pp. 185–192 (2013)Google Scholar
  12. 12.
    Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)CrossRefGoogle Scholar
  13. 13.
    Michelson, M., Macskassy,S.A.: Discovering users’ topics of interest on Twitter: a first look. In: AND 2010, pp. 73–80 (2010)Google Scholar
  14. 14.
    Noia, T.D., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: I-SEMANTICS 2012, pp. 1–8 (2012)Google Scholar
  15. 15.
    Piao, G., Breslin, J.G.: Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations. In: SEMANTICS 2016, pp. 81–88 (2016)Google Scholar
  16. 16.
    Varga, A., Basave, A.E.C., Rowe, M., Ciravegna, F., He, Y.: Linked knowledge sources for topic classification of microposts: a semantic graph-based approach. J. Web Semant. 26, 36–57 (2014)CrossRefGoogle Scholar
  17. 17.
    Weng, J., Lim, E., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential Twitterers. In: WSDM 2010, pp. 261–270 (2010)Google Scholar
  18. 18.
    Weng, L., Xu, Y., Li, Y., Nayak, R.: Exploiting item taxonomy for solving cold-start problem in recommendation making. In: ICTAI 2008, pp. 113–120 (2008)Google Scholar
  19. 19.
    Xu, Z., Lu, R., Xiang, L., Yang,Q.: Discovering user interest on Twitter with a modified author-topic model. In: WI 2011, pp. 422–429 (2011)Google Scholar
  20. 20.
    Yang, L., Sun, T., Zhang, M., Mei, Q.: WWW 2012, pp. 261–270 (2012)Google Scholar
  21. 21.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. ACM Trans. Inf. Syst. 33(3), 10:1–10:44 (2015)CrossRefGoogle Scholar
  22. 22.
    Yu, Y., Wang, C., Gao, Y.: Attributes coupling based item enhanced matrix factorization technique for recommender systems. CoRR, abs/1405.0770 (2014)Google Scholar
  23. 23.
    Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M.: Inferring implicit topical interests on Twitter. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 479–491. Springer, Cham (2016). doi:10.1007/978-3-319-30671-1_35 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fattane Zarrinkalam
    • 1
    • 2
  • Hossein Fani
    • 1
    • 3
  • Ebrahim Bagheri
    • 1
  • Mohsen Kahani
    • 2
  1. 1.Laboratory for Systems, Software and Semantics (LS3)Ryerson UniversityTorontoCanada
  2. 2.Department of Computer EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada

Personalised recommendations