Advertisement

Personalized Keyword Boosting for Venue Suggestion Based on Multiple LBSNs

  • Mohammad AliannejadiEmail author
  • Dimitrios Rafailidis
  • Fabio Crestani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10193)

Abstract

Personalized venue suggestion plays a crucial role in satisfying the users needs on location-based social networks (LBSNs). In this study, we present a probabilistic generative model to map user tags to venue taste keywords. We study four approaches to address the data sparsity problem with the aid of such mapping: one model to boost venue taste keywords and three alternative models to predict user tags. Furthermore, we calculate different scores from multiple LBSNs and show how to incorporate new information from the mapping into a venue suggestion approach. The computed scores are then integrated adopting learning to rank techniques. The experimental results on two TREC collections demonstrate that our approach beats state-of-the-art strategies.

Keywords

Venue suggestion User tags Location-based social networks 

Notes

Acknowledgements

This work was partially supported by the Swiss National Science Foundation (SNSF) under the project “Relevance Criteria Combination for Mobile IR (RelMobIR)”.

References

  1. 1.
    Aliannejadi, M., Bahrainian, S.A., Giachanou, A., Crestani, F.: University of Lugano at TREC 2015: contextual suggestion and temporal summarization tracks. In: Voorhees, E.M., Ellis, A. (eds.) TREC 2015. NIST (2015)Google Scholar
  2. 2.
    Aliannejadi, M., Mele, I., Crestani, F.: User model enrichment for venue recommendation. In: Ma, S., Wen, J.-R., Liu, Y., Dou, Z., Zhang, M., Chang, Y., Zhao, X. (eds.) AIRS 2016. LNCS, vol. 9994, pp. 212–223. Springer, Cham (2016). doi: 10.1007/978-3-319-48051-0_16 CrossRefGoogle Scholar
  3. 3.
    Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Ghahramani, Z. (ed.) ICML 2007, vol. 227, pp. 129–136. ACM (2007)Google Scholar
  4. 4.
    Chen, L., Chen, G., Wang, F.: Recommender systems based on user reviews: the state of the art. User Model. User-Adap. Interact. 25(2), 99–154 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and social influence in location-based social networks. In: Hoffmann, J., Selman, B. (eds.) AAAI 2012, pp. 17–23. AAAI Press (2012)Google Scholar
  6. 6.
    Chon, Y., Kim, Y., Cha, H.: Autonomous place naming system using opportunistic crowdsensing and knowledge from crowdsourcing. In: Abdelzaher, T.F., Römer, K., Rajkumar, R. (eds.) IPSN 2013, pp. 19–30. ACM (2013)Google Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    Dean-Hall, A., Clarke, C.L.A., Kamps, J., Kiseleva, J., Voorhees, E.M.: Overview of the TREC 2015 contextual suggestion track. In: Voorhees, E.M., Ellis, A. (eds.) TREC 2015. NIST (2015)Google Scholar
  9. 9.
    Griesner, J., Abdessalem, T., Naacke, H.: POI recommendation: towards fused matrix factorization with geographical and temporal influences. In: Werthner, H., Zanker, M., Golbeck, J., Semeraro, G. (eds.) RecSys 2015, pp. 301–304. ACM (2015)Google Scholar
  10. 10.
    He, T., Yin, H., Chen, Z., Zhou, X., Sadiq, S., Luo, B.: A spatial-temporal topic model for the semantic annotation of POIs in LBSNs. ACM TIST 8(1), 12:1–12:24 (2016)Google Scholar
  11. 11.
    Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)CrossRefGoogle Scholar
  12. 12.
    Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Hinrichs, E.W., Roth, D. (eds.) ACL 2003, pp. 24–31. ACL (2003)Google Scholar
  13. 13.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Brodley, C.E., Danyluk, A.P. (eds.) ICML 2001, pp. 282–289. Morgan Kaufmann (2001)Google Scholar
  14. 14.
    Liu, T.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Liu, C., Liu, B., Qu, M., Xiong, H.: Unified point-of-interest recommendation with temporal interval assessment. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C., Shen, D., Rastogi, R. (eds.) SIGKDD 2016, pp. 1015–1024. ACM (2016)Google Scholar
  16. 16.
    Rikitianskii, A., Harvey, M., Crestani, F.: A personalised recommendation system for context-aware suggestions. In: Rijke, M., Kenter, T., Vries, A.P., Zhai, C.X., Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 63–74. Springer, Cham (2014). doi: 10.1007/978-3-319-06028-6_6 CrossRefGoogle Scholar
  17. 17.
    Ye, M., Shou, D., Lee, W., Yin, P., Janowicz, K.: On the semantic annotation of places in location-based social networks. In: Apté, C., Ghosh, J., Smyth, P. (eds.) SIGKDD 2011, pp. 520–528. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohammad Aliannejadi
    • 1
    Email author
  • Dimitrios Rafailidis
    • 2
  • Fabio Crestani
    • 1
  1. 1.Faculty of InformaticsUniversità della Svizzera ItalianaLuganoSwitzerland
  2. 2.Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations