Utterance Retrieval Based on Recurrent Surface Text Patterns

  • Guillaume Dubuisson Duplessis
  • Franck Charras
  • Vincent Letard
  • Anne-Laure Ligozat
  • Sophie Rosset
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10193)

Abstract

This paper investigates the use of recurrent surface text patterns to represent and index open-domain dialogue utterances for a retrieval system that can be embedded in a conversational agent. This approach involves both the building of a database of such patterns by mining a corpus of written dialogic interactions, and the exploitation of this database in a generalised vector space model for utterance retrieval. It is a corpus-based, unsupervised, parameterless and language-independent process. Our study indicates that the proposed model performs objectively well comparatively to other retrieval models on a task of selection of dialogue examples derived from a large corpus of written dialogues.

Keywords

Dialogue utterance retrieval Example-based dialogue modelling Open-domain dialogue system Evaluation 

References

  1. 1.
    Ameixa, D., Coheur, L., Redol, R.A.: From subtitles to human interactions: introducing the subtle corpus. Technical report, INESC-ID (2013)Google Scholar
  2. 2.
    Banchs, R.E., Li, H.: IRIS: a chat-oriented dialogue system based on the vector space model. In: Proceedings of the ACL 2012 Demonstrations, pp. 37–42 (2012)Google Scholar
  3. 3.
    Charras, F., Dubuisson Duplessis, G., Letard, V., Ligozat, A.L., Rosset, S.: Comparing system-response retrieval models for open-domain and casual conversational agent. In: Workshop on Chatbots and Conversational Agent Technologies (2016)Google Scholar
  4. 4.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370 (2005)Google Scholar
  5. 5.
    Gandhe, S., Traum, D.R.: Surface text based dialogue models for virtual humans. In: Proceedings of the SIGDIAL (2013)Google Scholar
  6. 6.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, vol. 14, pp. 1188–1196 (2014)Google Scholar
  8. 8.
    Lee, C., Jung, S., Kim, S., Lee, G.G.: Example-based dialog modeling for practical multi-domain dialog system. Speech Commun. 51(5), 466–484 (2009)CrossRefGoogle Scholar
  9. 9.
    Lison, P., Tiedemann, J.: OpenSubtitles2016: extracting large parallel corpora from movie and tv subtitles. In: 10th edition of the Language Resources and Evaluation Conference (LREC), Portorož, Slovenia, May 2016Google Scholar
  10. 10.
    Lowe, R., Pow, N., Serban, I.V., Pineau, J.: The ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems. In: SIGDIAL, p. 285 (2015)Google Scholar
  11. 11.
    Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM Comput. Surv. 45(2), 19:1–19:39 (2013)CrossRefMATHGoogle Scholar
  12. 12.
    Nakov, P., Màrquez, L., Moschitti, A., Magdy, W., Mubarak, H., Freihat, A.A., Glass, J., Randeree, B.: Semeval-2016 task 3: community question answering. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 525–545 (2016)Google Scholar
  13. 13.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)Google Scholar
  14. 14.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010Google Scholar
  15. 15.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)MATHGoogle Scholar
  16. 16.
    Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of Association for Machine Translation in the Americas, vol. 200 (2006)Google Scholar
  17. 17.
    Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.Y., Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of conversational responses. CoRR abs/1506.06714 (2015)Google Scholar
  18. 18.
    Weizenbaum, J.: ELIZA - a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)CrossRefGoogle Scholar
  19. 19.
    Wong, S.K.M., Ziarko, W., Raghavan, V.V., Wong, P.: On modeling of information retrieval concepts in vector spaces. ACM Trans. Database Syst. 12(2), 299–321 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guillaume Dubuisson Duplessis
    • 1
  • Franck Charras
    • 1
  • Vincent Letard
    • 2
  • Anne-Laure Ligozat
    • 3
  • Sophie Rosset
    • 1
  1. 1.LIMSI, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.LIMSI, CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  3. 3.LIMSI, CNRS, ENSIIE, Université Paris-SaclayOrsayFrance

Personalised recommendations