An Extended Discontinuous Galerkin Framework for Multiphase Flows

  • Thomas Utz
  • Christina Kallendorf
  • Florian Kummer
  • Björn Müller
  • Martin Oberlack
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)


We present a framework for handling cut cells in a high order discontinuous Galerkin (DG) context. To describe the boundary between fluid phases, we use a level-set formulation. When the interface cuts a computational cell, we discretize the resulting sub-cells with the same DG method as used on standard cells. This requires a suitable quadrature procedure. Within this framework, we present a solver for the two-phase Navier-Stokes equation, a reinitialization procedure for the level-set and a solver for transport-processes on the surface.


  1. 1.
    Anco, S., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002)MATHGoogle Scholar
  2. 2.
    Anco, S., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part II: general treatment. Eur. J. Appl. Math. 13, 567–585 (2002)MATHGoogle Scholar
  3. 3.
    Anco, S.C., Bluman, G.W., Cheviakov, A.F.: Construction of conservation laws: how the direct method generalizes Noether’s theorem. In: Proceedings of 4th Workshop “Group Analysis of Differential Equations & Integrability”, vol. 1, pp. 1–23 (2009)Google Scholar
  4. 4.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742 (1982)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002). doi:10.1137/S0036142901384162MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Basting, C., Kuzmin, D.: A minimization-based finite element formulation for interface-preserving level set reinitialization. Computing 95(1), 13–25 (2012). doi:10.1007/s00607-012-0259-zMathSciNetGoogle Scholar
  7. 7.
    Bluman, G., Cheviakov, A., Anco, S.: Applications of Symmetry Methods to Partial Differential Equations, vol. 168. Applied Mathematical Sciences. Springer, Berlin (2010)MATHGoogle Scholar
  8. 8.
    Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761 (2010). doi:10.1137/080737046MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010). doi:10.1002/nme.2768MathSciNetMATHGoogle Scholar
  10. 10.
    Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 223(1), 398–415 (2007). doi:10.1016/ Scholar
  11. 11.
    Desjardins, O., Pitsch, H.: A spectrally refined interface approach for simulating multiphase flows. J. Comput. Phys. 228(5), 1658–1677 (2009). doi:10.1016/ Scholar
  12. 12.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69. Springer, Berlin (2011).
  13. 13.
    Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197(45–48), 3768–3782 (2008). doi:10.1016/j.cma.2008.02.036MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dziuk, G., Elliott, M.C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dziuk, G., Elliott, M.C.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)MathSciNetGoogle Scholar
  16. 16.
    Dziuk, G., Elliott, M.C.: Eulerian finite element method for parabolic PDEs on implicit surfaces. IMA J. Numer. Anal. 10, 119–138 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Dziuk, G., Elliott, C.M.: An Eulerian approach to transport and diffusion on evolving implicit surfaces. Comput. Vis. Sci. 13, 17–28 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Elias, R.N., Martins, M.A.D., Coutinho, A.L.G.A.: Simple finite element-based computation of distance functions in unstructured grids. Int. J. Numer. Methods Eng. 72(9), 1095–1110 (2007). doi:10.1002/nme.2079MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Elliott, M.C., Eilks, C.: Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. J. Comput. Phys. 227, 9727–9741 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Engwer, C.: An unfitted discontinuous Galerkin scheme for micro-scale simulations and numerical upscaling. Ph.D. thesis, Heidelberg (2009)Google Scholar
  21. 21.
    Fröhlcke, A., Gjonaj, E., Weiland, T.: A boundary conformal DG approach for electro-quasistatics problems. In: Michielsen, B., Poirier, J.R. (eds.) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry, vol. 16, pp. 153–161. Springer, Berlin (2012)CrossRefGoogle Scholar
  22. 22.
    Greer, J.B., Bertozzi, A., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Groß, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9(4), 239–257 (2006). doi:10.1007/s00791-006-0024-yMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Grooss, J., Hesthaven, J.S.: A level set discontinuous Galerkin method for free surface flows. Comput. Methods Appl. Mech. Eng. 195(25–28), 3406–3429 (2006). doi:10.1016/j.cma.2005.06.020MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hadamard, J.: Mouvement permanent lent d’ une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 1735–1738 (1911)MATHGoogle Scholar
  26. 26.
    Harper, J.F.: On spherical bubbles rising steadily in dilute surfactant solutions. Q. J. Mech. Appl. Math. 27(1), 87–100 (1974). doi:10.1093/qjmam/27.1.87CrossRefMATHGoogle Scholar
  27. 27.
    Harper, J.F.: Stagnant-cap bubbles with both diffusion and adsorption rate-determining. J. Fluid Mech. 521, 115–123 (2004). doi:10.1017/S0022112004001843MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hu, C., Shu, C.: A Discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999). doi:10.1137/S1064827598337282MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kallendorf, C.: An Eulerian discontinuous Galerkin method for the numerical simulation of interfacial transport. Ph.D. thesis, TU Darmstadt (2016)Google Scholar
  30. 30.
    Kallendorf, C., Cheviakov, A.F., Oberlack, M., Wang, Y.: Conservation laws of surfactant transport equations. Phys. Fluids 24(10), 102105 (2012). doi:
  31. 31.
    Kallendorf, C., Fath, A., Oberlack, M., Wang, Y.: Exact solutions to the interfacial surfactant transport equation on a droplet in a stokes flow regime. Phys. Fluids 27(8), 082104 (2015). doi:
  32. 32.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Klein, B., Kummer, F., Oberlack, M.: A SIMPLE based discontinuous Galerkin solver for steady incompressible flows. J. Comput. Phys. 237, 235–250 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kummer, F.: Extended discontinuous Galerkin methods for two-phase flows: the spatial discretization. Int. J. Numer. Methods Eng. 109(2), 259–289 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kummer, F., Oberlack, M.: An extension of the discontinuous Galerkin method for the singular Poisson equation. SIAM J. Sci. Comput. 35(2), A603–A622 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Kummer, F., Warburton, T.: Patch-recovery filters for curvature in discontinuous Galerkin-based level-set methods. Commun. Comput. Phys. 19(02), 329–353 (2016). MathSciNetCrossRefGoogle Scholar
  37. 37.
    Legrain, G., Chevaugeon, N., Dréau, K.: High order x-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput. Methods Appl. Mech. Eng. 241–244, 172–189 (2012). doi:10.1016/j.cma.2012.06.001MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Lenz, M., Nemadjieu, S., Rumpf, M.: Finite volume method on moving surfaces. In: Eymard, R., Hérald, J.M. (eds.) Finite Volumes for Complex Applications V, pp. 561–576. Wiley, New York (2008)Google Scholar
  39. 39.
    Li, C., Xu, C., Gui, C., Fox, M.: Level set evolution without re-initialization: a new variational formulation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 430–436 (2005). doi:10.1109/CVPR.2005.213Google Scholar
  40. 40.
    Li, F., Shu, C.W., Zhang, Y.T., Zhao, H.: A second order discontinuous Galerkin fast sweeping method for Eikonal equations. J. Comput. Phys. 227(17), 8191–8208 (2008). doi:10.1016/ Scholar
  41. 41.
    Luo, S.: A uniformly second order fast sweeping method for Eikonal equations. J. Comput. Phys. 241, 104–117 (2013). doi:10.1016/ Scholar
  42. 42.
    Marchandise, E.: Simulation of three-dimensional two-phase flows: coupling of a stabilized finite element method with a discontinuous level set approach. Ph.D. thesis, Université Catholique de Louvain (2006)Google Scholar
  43. 43.
    Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.F.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225(1), 949–974 (2007). doi:10.1016/ Scholar
  44. 44.
    Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226(2), 1432–1443 (2007). doi:16/ Scholar
  45. 45.
    Min, C., Gibou, F.: Robust second-order accurate discretizations of the multi-dimensional heaviside and dirac delta functions. J. Comput. Phys. 227(22), 9686–9695 (2008). doi:10.1016/ Scholar
  46. 46.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefMATHGoogle Scholar
  47. 47.
    Mousavi, S.E., Sukumar, N.: Generalized gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput. Methods Appl. Mech. Eng. 199(49–52), 3237–3249 (2010). doi:10.1016/j.cma.2010.06.031MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Mousavi, S.E., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011). doi:10.1007/s00466-010-0562-5MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Müller, B., Krämer-Eis, S., Kummer, F., Oberlack, M.: A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng. pp. n/a–n/a (2016). doi:10.1002/nme.5343. Nme.5343
  50. 50.
    Müller, B., Kummer, F., Oberlack, M., Wang, Y.: Simple multidimensional integration of discontinuous functions with application to level set methods. Int. J. Numer. Methods Eng. 92(7), 637–651 (2012)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96(8), 512–528 (2013). doi:10.1002/nme.4569MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, New York, NY (2010)MATHGoogle Scholar
  53. 53.
    Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001). doi:10.1006/jcph.2000.6636MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Owkes, M., Desjardins, O.: A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows. J. Comput. Phys. 249, 275–302 (2013). doi:10.1016/ Scholar
  55. 55.
    Pochet, F., Hillewaert, K., Geuzaine, P., Remacle, J.F., Marchandise, M.: A 3d strongly coupled implicit discontinuous Galerkin level set-based method for modeling two-phase flows. Comput. Fluids 87, 144–155 (2013). doi:10.1016/j.compfluid.2013.04.010MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  57. 57.
    Qin, R., Krivodonova, L.: A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. J. Comput. Sci. 4(1–2), 24–35 (2013). doi:10.1016/j.jocs.2012.03.008CrossRefGoogle Scholar
  58. 58.
    Rybczynski, W.: Über die fortschreitende bewegung einer flüssigen kugel in einem zähen medium. Bull. Acad. Sci. de Cracovie A 40–46 (1911)Google Scholar
  59. 59.
    Saye, R.: High-order methods for computing distances to implicitly defined surfaces. Commun. Appl. Math. Comput. Sci. 9(1), 107–141 (2014). doi:10.2140/camcos.2014.9.107MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Shahbazi, K., Fischer, P., Ethier, R.C.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007). doi:10.1016/ Scholar
  61. 61.
    Sudhakar, Y., Wall, W.A.: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. (2013). doi:10.1016/j.cma.2013.01.007MathSciNetMATHGoogle Scholar
  62. 62.
    Sussman, M., Hussaini, M.Y.: A discontinuous spectral element method for the level set equation. J. Sci. Comput. 19(1–3), 479–500 (2003). doi:10.1023/A:1025328714359MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994). doi:10.1006/jcph.1994.1155CrossRefMATHGoogle Scholar
  64. 64.
    Utz, T., Kummer, F., Oberlack, M.: Interface-preserving level-set reinitialization for DG-FEM. Int. J. Numer. Meth. Fluids 84(4), 183–198 (2017). doi:10.1002/fld.4344CrossRefGoogle Scholar
  65. 65.
    Vlahovska, P.M., Blawzdziewicz, J., Loewenberg, M.: Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624 (2009). doi:10.1017/S0022112008005417Google Scholar
  66. 66.
    Wang, Y., Papageorgiu, D.T., Maldarelli, C.: Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390, 251–270 (1999). doi:10.1017/S0022112099005157CrossRefMATHGoogle Scholar
  67. 67.
    Wu, L., Zhang, Y.T.: A Third order fast sweeping method with linear computational complexity for Eikonal equations. J. Sci. Comput. 62(1), 198–229 (2014). doi:10.1007/s10915-014-9856-7MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Xiao, H., Gimbutas, Z.: A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions. Comput. Math. Appl. 59(2), 663–676 (2010). doi:10.1016/j.camwa.2009.10.027MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Zhang, Y., Chen, S., Li, F., Zhao, H., Shu, C.: Uniformly accurate discontinuous Galerkin fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33(4), 1873–1896 (2011). doi:10.1137/090770291MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996). doi:
  72. 72.
    Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101(1–3), 207–224 (1992). doi:10.1016/0045-7825(92)90023-D. MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Utz
    • 1
  • Christina Kallendorf
    • 1
  • Florian Kummer
    • 1
  • Björn Müller
    • 1
  • Martin Oberlack
    • 1
  1. 1.Institute of Fluid DynamicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations