Advertisement

Future Prospects: Deep Imaging of Galaxy Outskirts Using Telescopes Large and Small

  • Roberto AbrahamEmail author
  • Pieter van Dokkum
  • Charlie Conroy
  • Allison Merritt
  • Jielai Zhang
  • Deborah Lokhorst
  • Shany Danieli
  • Lamiya Mowla
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 434)

Abstract

The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about 40 years. Recent technical advances have at last begun to erode the barriers preventing progress. In this chapter, we describe the technical challenges to low surface brightness imaging, describe some solutions and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.

References

  1. Abadi, M.G., Navarro, J.F., Steinmetz, M.: Stars beyond galaxies: the origin of extended luminous haloes around galaxies. Mon. Not. R. Astron. Soc. 365, 747–758 (2006). doi:10.1111/j.1365-2966.2005.09789.x, arXiv:astro-ph/0506659Google Scholar
  2. Abraham, R.G., van Dokkum, P.G.: Ultra-low surface brightness imaging with the dragonfly telephoto array. Publ. Astron. Soc. Pac. 126, 55–69 (2014). doi:10.1086/674875, 1401.5473Google Scholar
  3. Agertz, O., Kravtsov, A.V.: The impact of stellar feedback on the structure, size and morphology of galaxies in Milky Way size dark matter haloes. arXiv:150900853 (2015), 1509.00853Google Scholar
  4. Amorisco, N.C., Loeb, A.: Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Mon. Not. R. Astron. Soc. 459, L51–L55 (2016). doi:10.1093/mnrasl/slw055, 1603.00463Google Scholar
  5. Amorisco, N.C., Martinez-Delgado, D., Schedler, J.: A dwarf galaxy’s transformation and a massive galaxy’s edge: autopsy of kill and killer in NGC 1097. ArXiv e-prints (2015), 1504.03697Google Scholar
  6. Atkinson, A.M., Abraham, R.G., Ferguson, A.M.N.: Faint tidal features in Galaxies within the Canada-France-Hawaii telescope legacy survey wide fields. Astrophys. J. 765, 28 (2013). doi:10.1088/0004-637X/765/1/28, 1301.4275Google Scholar
  7. Bailin, J., Bell, E.F., Chappell, S.N., Radburn-Smith, D.J., de Jong, R.S.: The resolved stellar halo of NGC 253. Astrophys. J. 736, 24 (2011). doi:10.1088/0004-637X/736/1/24, 1105.0005Google Scholar
  8. Bakos, J., Trujillo, I.: Deep surface brightness profiles of Spiral Galaxies from SDSS Stripe82: touching Stellar Halos. ArXiv e-prints (2012), 1204.3082Google Scholar
  9. Barker, M.K., Ferguson, A.M.N., Irwin, M.J., Arimoto, N., Jablonka, P.: Quantifying the faint structure of galaxies: the late-type spiral NGC 2403. Mon. Not. R. Astron. Soc. 419, 1489–1506 (2012). doi:10.1111/j.1365-2966.2011.19814.x, 1109.2625Google Scholar
  10. Beasley, M.A., Trujillo, I.: Globular clusters indicate that ultra-diffuse galaxies are dwarfs. Astrophys. J. 830, 23 (2016). doi:10.3847/0004-637X/830/1/23, 1604.08024Google Scholar
  11. Bell, E.F., Zucker, D.B., Belokurov, V., Sharma, S., Johnston, K.V., Bullock, J.S., Hogg, D.W., Jahnke, K., de Jong, J.T.A., Beers, T.C., Evans, N.W., Grebel, E.K., Ivezić, Ž., Koposov, S.E., Rix, H.W., Schneider, D.P., Steinmetz, M., Zolotov, A.: The accretion origin of the Milky Way’s Stellar Halo. Astrophys. J. 680, 295–311 (2008). doi:10.1086/588032, 0706.0004Google Scholar
  12. Belokurov, V., Evans, N.W., Irwin, M.J., Lynden-Bell, D., Yanny, B., Vidrih, S., Gilmore, G., Seabroke, G., Zucker, D.B., Wilkinson, M.I., Hewett, P.C., Bramich, D.M., Fellhauer, M., Newberg, H.J., Wyse, R.F.G., Beers, T.C., Bell, E.F., Barentine, J.C., Brinkmann, J., Cole, N., Pan, K., York, D.G.: An orphan in the “field of streams”. Astrophys. J. 658, 337–344 (2007). doi:10.1086/511302. arXiv:astro-ph/0605705Google Scholar
  13. Bernstein, R.A.: The optical extragalactic background light: revisions and further comments. Astrophys. J. 666, 663–673 (2007). doi:10.1086/519824ADSCrossRefGoogle Scholar
  14. Bertone, S., Schaye, J.: Rest-frame ultraviolet line emission from the intergalactic medium at 2 ≤ z ≤ 5. Mon. Not. R. Astron. Soc. 419, 780–798 (2012). doi:10.1111/j.1365-2966.2011.19742.x, 1008.1791Google Scholar
  15. Carlberg, R.G.: Star stream folding by Dark Galactic Subhalos. Astrophys. J. 705, L223–L226 (2009). doi:10.1088/0004-637X/705/2/L223, 0908.4345Google Scholar
  16. Carollo, D., Beers, T.C., Lee, Y.S., Chiba, M., Norris, J.E., Wilhelm, R., Sivarani, T., Marsteller, B., Munn, J.A., Bailer-Jones, C.A.L., Fiorentin, P.R., York, D.G.: Two stellar components in the halo of the Milky Way. Nature 450, 1020–1025 (2007). doi:10.1038/nature06460, 0706.3005Google Scholar
  17. Carollo, D., Beers, T.C., Chiba, M., Norris, J.E., Freeman, K.C., Lee, Y.S., Ivezić, Ž., Rockosi, C.M., Yanny, B.: Structure and kinematics of the Stellar Halos and thick disks of the Milky Way based on calibration stars from Sloan Digital Sky Survey DR7. Astrophys. J. 712, 692–727 (2010). doi:10.1088/0004-637X/712/1/692, 0909.3019Google Scholar
  18. Collins, M.L.M., Chapman, S.C., Rich, R.M., Ibata, R.A., Martin, N.F., Irwin, M.J., Bate, N.F., Lewis, G.F., Peñarrubia, J., Arimoto, N., Casey, C.M., Ferguson, A.M.N., Koch, A., McConnachie, A.W., Tanvir, N.: The masses of local group dwarf spheroidal galaxies: the death of the universal mass profile. Astrophys. J. 783, 7 (2014). doi:10.1088/0004-637X/783/1/7, 1309.3053Google Scholar
  19. Cooper, A.P., Cole, S., Frenk, C.S., White, S.D.M., Helly, J., Benson, A.J., De Lucia, G., Helmi, A., Jenkins, A., Navarro, J.F., Springel, V., Wang, J.: Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 406, 744–766 (2010). doi:10.1111/j.1365-2966.2010.16740.x, 0910.3211Google Scholar
  20. Cooper, A.P., D’Souza, R., Kauffmann, G., Wang, J., Boylan-Kolchin, M., Guo, Q., Frenk, C.S., White, S.D.M.: Galactic accretion and the outer structure of galaxies in the CDM model. ArXiv e-prints (2013), 1303.6283Google Scholar
  21. Cooper, A.P., Parry, O.H., Lowing, B., Cole, S., Frenk, C.: Formation of in situ stellar haloes in Milky Way-mass galaxies. Mon. Not. R. Astron. Soc. 454, 3185–3199 (2015). doi:10.1093/mnras/stv2057, 1501.04630Google Scholar
  22. Courteau, S., Widrow, L.M., McDonald, M., Guhathakurta, P., Gilbert, K.M., Zhu, Y., Beaton, R.L., Majewski, S.R.: The luminosity profile and structural parameters of the andromeda galaxy. Astrophys. J. 739, 20 (2011). doi:10.1088/0004-637X/739/1/20, 1106.3564Google Scholar
  23. DeVore, J.G., Kristl, J.A., Rappaport, S.A.: Retrieving cirrus microphysical properties from stellar aureoles. J. Geophys. Res. Atmos. 118(11), 5679–5697 (2013). doi:10.1002/jgrd.50440ADSCrossRefGoogle Scholar
  24. Duc, P.A.: Using deep images and simulations to trace collisional debris around massive galaxies. ArXiv e-prints (2016), 1604.08364Google Scholar
  25. Duc, P.A., Cuillandre, J.C., Karabal, E., Cappellari, M., Alatalo, K., Blitz, L., Bournaud, F., Bureau, M., Crocker, A.F., Davies, R.L., Davis, T.A., de Zeeuw, P.T., Emsellem, E., Khochfar, S., Krajnović, D., Kuntschner, H., McDermid, R.M., Michel-Dansac, L., Morganti, R., Naab, T., Oosterloo, T., Paudel, S., Sarzi, M., Scott, N., Serra, P., Weijmans, A.M., Young, L.M.: The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images. Mon. Not. R. Astron. Soc. 446, 120–143 (2015). doi:10.1093/mnras/stu2019, 1410.0981Google Scholar
  26. Elmegreen, B.G., Hunter, D.A.: Radial profiles of Star formation in the far outer regions of galaxy disks. Astrophys. J. 636, 712–720 (2006). doi:10.1086/498082, astro-ph/0509190Google Scholar
  27. Ferguson, A.M.N., Irwin, M.J., Ibata, R.A., Lewis, G.F., Tanvir, N.R.: Evidence for stellar substructure in the halo and outer disk of M31. Astron. J. 124, 1452–1463 (2002). doi:10.1086/342019, astro-ph/0205530Google Scholar
  28. Font, A.S., McCarthy, I.G., Crain, R.A., Theuns, T., Schaye, J., Wiersma, R.P.C., Dalla Vecchia, C.: Cosmological simulations of the formation of the stellar haloes around disc galaxies. Mon. Not. R. Astron. Soc. 416, 2802–2820 (2011). doi:10.1111/j.1365-2966.2011.19227.x, 1102.2526Google Scholar
  29. Gilbert, K.M., Guhathakurta, P., Beaton, R.L., Bullock, J., Geha, M.C., Kalirai, J.S., Kirby, E.N., Majewski, S.R., Ostheimer, J.C., Patterson, R.J., Tollerud, E.J., Tanaka, M., Chiba, M.: Global properties of M31’s Stellar Halo from the SPLASH survey. I. Surface brightness profile. Astrophys. J. 760, 76 (2012). doi:10.1088/0004-637X/760/1/76, 1210.3362Google Scholar
  30. Greggio, L., Rejkuba, M., Gonzalez, O.A., Arnaboldi, M., Iodice, E., Irwin, M., Neeser, M.J., Emerson, J.: A panoramic VISTA of the stellar halo of NGC 253. Astron. Astrophys. 562, A73 (2014). doi:10.1051/0004-6361/201322759, 1401.1665Google Scholar
  31. Hamilton, D.P., Skrutskie, M.F., Verbiscer, A.J., Masci, F.J.: Small particles dominate Saturn’s Phoebe ring to surprisingly large distances. Nature 522, 185–187 (2015). doi:10.1038/nature14476ADSCrossRefGoogle Scholar
  32. Harris, W.E., Harris, G.L.H., Alessi, M.: A catalog of globular cluster systems: what determines the size of a Galaxy’s globular cluster population? Astrophys. J. 772, 82 (2013). doi:10.1088/0004-637X/772/2/82, 1306.2247Google Scholar
  33. Harris, W.E., Harris, G.L., Hudson, M.J.: Dark matter halos in galaxies and globular cluster populations. II. Metallicity and morphology. Astrophys. J. 806, 36 (2015). doi:10.1088/0004-637X/806/1/36, 1504.03199Google Scholar
  34. Hudson, M.J., Harris, G.L., Harris, W.E.: Dark matter halos in galaxies and globular cluster populations. Astrophys. J. 787, L5 (2014). doi:10.1088/2041-8205/787/1/L5, 1404.1920Google Scholar
  35. Ibata, R., Lewis, G.F., Irwin, M., Totten, E., Quinn, T.: Great circle tidal streams: evidence for a nearly spherical massive dark halo around the Milky Way. Astrophys. J. 551, 294–311 (2001)ADSCrossRefGoogle Scholar
  36. Ibata, R., Martin, N.F., Irwin, M., Chapman, S., Ferguson, A.M.N., Lewis, G.F., McConnachie, A.W.: The haunted halos of Andromeda and Triangulum: a panorama of galaxy formation in action. Astrophys. J. 671, 1591–1623 (2007). doi:10.1086/522574, 0704.1318Google Scholar
  37. Irwin, M.J., Ferguson, A.M.N., Ibata, R.A., Lewis, G.F., Tanvir, N.R.: A minor-axis surface brightness profile for M31. Astrophys. J. 628, L105–L108 (2005). doi:10.1086/432718, astro-ph/0505077Google Scholar
  38. Johnston, K.V., Bullock, J.S., Sharma, S., Font, A., Robertson, B.E., Leitner, S.N.: Tracing galaxy formation with stellar halos. II. Relating substructure in phase and abundance space to accretion histories. Astrophys. J. 689, 936–957 (2008). doi:10.1086/592228, 0807.3911Google Scholar
  39. King, I.R.: The profile of a star image. Publ. Astron. Soc. Pac. 83, 199 (1971). doi:10.1086/129100ADSCrossRefGoogle Scholar
  40. Koda, J., Yagi, M., Yamanoi, H., Komiyama, Y.: Approximately a thousand ultra-diffuse galaxies in the coma cluster. Astrophys. J. 807, L2 (2015). doi:10.1088/2041-8205/807/1/L2, 1506.01712Google Scholar
  41. Kormendy, J., Bahcall, J.N.: Faint envelopes of galaxies. Astron. J. 79, 671–677 (1974). doi:10.1086/111595ADSCrossRefGoogle Scholar
  42. Majewski, S.R., Skrutskie, M.F., Weinberg, M.D., Ostheimer, J.C.: A two micron all sky survey view of the sagittarius dwarf galaxy. I. Morphology of the sagittarius core and tidal arms. Astrophys. J. 599, 1082–1115 (2003). doi:10.1086/379504, astro-ph/0304198Google Scholar
  43. Makarov, D., Karachentsev, I.: Galaxy groups and clouds in the local (z ∼ 0. 01) Universe. Mon. Not. R. Astron. Soc. 412, 2498–2520 (2011). doi:10.1111/j.1365-2966.2010.18071.x, 1011.6277Google Scholar
  44. Martínez-Delgado, D., Pohlen, M., Gabany, R.J., Majewski, S.R., Peñarrubia, J., Palma, C.: Discovery of a giant stellar tidal stream around the disk galaxy NGC 4013. Astrophys. J. 692, 955–963 (2009). doi:10.1088/0004-637X/692/2/955, 0812.3219Google Scholar
  45. Martínez-Delgado, D., Gabany, R.J., Crawford, K., Zibetti, S., Majewski, S.R., Rix, H.W., Fliri, J., Carballo-Bello, J.A., Bardalez-Gagliuffi, D.C., Peñarrubia, J., Chonis, T.S., Madore, B., Trujillo, I., Schirmer, M., McDavid, D.A.: Stellar tidal streams in spiral galaxies of the local volume: a pilot survey with modest aperture telescopes. Astron. J. 140, 962–967 (2010). doi:10.1088/0004-6256/140/4/962, 1003.4860Google Scholar
  46. Martínez-Delgado, D., Romanowsky, A.J., Gabany, R.J., Annibali, F., Arnold, J.A., Fliri, J., Zibetti, S., van der Marel, R.P., Rix, H.W., Chonis, T.S., Carballo-Bello, J.A., Aloisi, A., Macciò, A.V., Gallego-Laborda, J., Brodie, J.P., Merrifield, M.R.: Dwarfs gobbling dwarfs: a stellar tidal stream around NGC 4449 and hierarchical galaxy formation on small scales. Astrophys. J. 748, L24 (2012). doi:10.1088/2041-8205/748/2/L24, 1112.2154Google Scholar
  47. Martínez-Delgado, D., Läsker, R., Sharina, M., Toloba, E., Fliri, J., Beaton, R., Valls-Gabaud, D., Karachentsev, I.D., Chonis, T.S., Grebel, E.K., Forbes, D.A., Romanowsky, A.J., Gallego-Laborda, J., Teuwen, K., Gómez-Flechoso, M.A., Wang, J., Guhathakurta, P., Kaisin, S., Ho, N.: Discovery of an ultra-diffuse galaxy in the Pisces–Perseus supercluster. Astron. J. 151, 96 (2016). doi:10.3847/0004-6256/151/4/96, 1601.06960Google Scholar
  48. McConnachie, A.W., Irwin, M.J., Ibata, R.A., Dubinski, J., Widrow, L.M., Martin, N.F., Côté, P., Dotter, A.L., Navarro, J.F., Ferguson, A.M.N., Puzia, T.H., Lewis, G.F., Babul, A., Barmby, P., Bienaymé, O., Chapman, S.C., Cockcroft, R., Collins, M.L.M., Fardal, M.A., Harris, W.E., Huxor, A., Mackey, A.D., Peñarrubia, J., Rich, R.M., Richer, H.B., Siebert, A., Tanvir, N., Valls-Gabaud, D., Venn, K.A.: The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009). doi:10.1038/nature08327, 0909.0398Google Scholar
  49. Meinel, A.B.: An overview of the technological possibilities of future telescopes. In: Pacini, F., Richter, W., Wilson, R.N. (eds.) Optical Telescopes of the Future, pp. 13–26. Southern European Observatory, Geneva (1978)Google Scholar
  50. Merritt, A., van Dokkum, P., Abraham, R.: The discovery of seven extremely low surface brightness galaxies in the field of the nearby spiral galaxy M101. Astrophys. J. 787, L37 (2014). doi:10.1088/2041-8205/787/2/L37, 1406.2315Google Scholar
  51. Merritt, A., van Dokkum, P., Abraham, R., Zhang, J.: The dragonfly nearby galaxies survey. I. Substantial variation in the diffuse stellar halos around spiral galaxies. Astrophys. J. 830, 62 (2016). doi:10.3847/0004-637X/830/2/62, 1606.08847Google Scholar
  52. Mihos, J.C., Durrell, P.R., Ferrarese, L., Feldmeier, J.J., Côté, P., Peng, E.W., Harding, P., Liu, C., Gwyn, S., Cuillandre, J.C.: Galaxies at the extremes: ultra-diffuse galaxies in the virgo cluster. Astrophys. J. 809, L21 (2015). doi:10.1088/2041-8205/809/2/L21, 1507.02270Google Scholar
  53. Milgrom, M.: Ultra-diffuse cluster galaxies as key to the MOND cluster conundrum. Mon. Not. R. Astron. Soc. 454, 3810–3815 (2015). doi:10.1093/mnras/stv2202. 1508.04001ADSCrossRefGoogle Scholar
  54. Monachesi, A., Bell, E.F., Radburn-Smith, D.J., de Jong, R.S., Bailin, J., Holwerda, B., Streich, D.: Resolving the stellar halos of six massive disk galaxies beyond the Local Group. In: Bragaglia, A., Arnaboldi, M., Rejkuba, M., Romano, D. (eds.) The General Assembly of Galaxy Halos: Structure, Origin and Evolution. IAU Symposium, vol. 317, pp. 222–227 (2016). doi:10.1017/S1743921315008558, http://adsabs.harvard.edu/abs/2016IAUS..317..222M ADSGoogle Scholar
  55. Montes, M., Trujillo, I.: Intracluster light at the frontier: A2744. Astrophys. J. 794, 137 (2014). doi:10.1088/0004-637X/794/2/137, 1405.2070Google Scholar
  56. Mouhcine, M., Rejkuba, M., Ibata, R.: The stellar halo of the edge-on galaxy NGC 891. Mon. Not. R. Astron. Soc. 381, 873–880 (2007). doi:10.1111/j.1365-2966.2007.12291.xADSCrossRefGoogle Scholar
  57. Oschmann, J.M. (ed.): The scaling relationship between telescope cost and aperture size for very large telescopes. In: SPIE Conference Series, vol. 5489 (2004). doi:10.1117/12.552181Google Scholar
  58. Peng, E.W., Lim, S.: A rich globular cluster system in Dragonfly 17: are ultra-diffuse galaxies pure stellar halos? Astrophys. J. 822, L31 (2016). doi:10.3847/2041-8205/822/2/L31, 1604.07496Google Scholar
  59. Pillepich, A., Vogelsberger, M., Deason, A., Rodriguez-Gomez, V., Genel, S., Nelson, D., Torrey, P., Sales, L.V., Marinacci, F., Springel, V., Sijacki, D., Hernquist, L.:Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies. Mon. Not. R. Astron. Soc. 444, 237–249 (2014). doi:10.1093/mnras/stu1408, 1406.1174Google Scholar
  60. Pillepich, A., Madau, P., Mayer, L.: Building late-type spiral galaxies by in-situ and ex-situ star formation. Astrophys. J. 799, 184 (2015). doi:10.1088/0004-637X/799/2/184, 1407.7855Google Scholar
  61. Pohlen, M., Trujillo, I.: The structure of galactic disks. Studying late-type spiral galaxies using SDSS. Astron. Astrophys. 454, 759–772 (2006). doi:10.1051/0004-6361:20064883, astro-ph/0603682Google Scholar
  62. Purcell, C.W., Bullock, J.S., Zentner, A.R.: Shredded galaxies as the source of diffuse intrahalo light on varying scales. Astrophys. J. 666, 20–33 (2007). doi:10.1086/519787, astro-ph/0703004Google Scholar
  63. Putman, M.E., Peek, J.E.G., Joung, M.R.: Gaseous galaxy halos. Ann. Rev. Astron. Astrophys. 50, 491–529 (2012). doi:10.1146/annurev-astro-081811-125612, 1207.4837Google Scholar
  64. Racine, R.: The telescope point spread function. Publ. Astron. Soc. Pac. 108, 699 (1996). doi:10.1086/133788ADSCrossRefGoogle Scholar
  65. Radburn-Smith, D.J., de Jong, R.S., Seth, A.C., Bailin, J., Bell, E.F., Brown, T.M., Bullock, J.S., Courteau, S., Dalcanton, J.J., Ferguson, H.C., Goudfrooij, P., Holfeltz, S., Holwerda, B.W., Purcell, C., Sick, J., Streich, D., Vlajic, M., Zucker, D.B.: The GHOSTS survey. I. Hubble space telescope advanced camera for surveys data. Astrophys. J. Suppl. Ser. 195, 18 (2011). doi:10.1088/0067-0049/195/2/18Google Scholar
  66. Rest, A., Prieto, J.L., Walborn, N.R., Smith, N., Bianco, F.B., Chornock, R., Welch, D.L., Howell, D.A., Huber, M.E., Foley, R.J., Fong, W., Sinnott, B., Bond, H.E., Smith, R.C., Toledo, I., Minniti, D., Mandel, K.: Light echoes reveal an unexpectedly cool η Carinae during its nineteenth-century Great Eruption. Nature 482, 375–378 (2012). doi:10.1038/nature10775, 1112.2210Google Scholar
  67. Richardson, J.C., Ferguson, A.M.N., Johnson, R.A., Irwin, M.J., Tanvir, N.R., Faria, D.C., Ibata, R.A., Johnston, K.V., Lewis, G.F., McConnachie, A.W., Chapman, S.C.: The nature and origin of substructure in the outskirts of M31. I. Surveying the stellar content with the hubble space telescope advanced camera for surveys. Astron. J. 135, 1998–2012 (2008). doi:10.1088/0004-6256/135/6/1998, 0803.2614Google Scholar
  68. Roman, J., Trujillo, I.: The spatial distribution of ultra diffuse galaxies within large scale structures. ArXiv e-prints (2016), 1603.03494Google Scholar
  69. Sandin, C.: The influence of diffuse scattered light. I. The PSF and its role in observations of the edge-on galaxy NGC 5907. Astron. Astrophys. 567, A97 (2014). doi:10.1051/0004-6361/201423429, 1406.5508Google Scholar
  70. Sandin, C.: The influence of diffuse scattered light. II. Observations of galaxy haloes and thick discs and hosts of blue compact galaxies. Astron. Astrophys. 577, A106 (2015). doi:10.1051/0004-6361/201425168, 1502.07244Google Scholar
  71. Seth, A., de Jong, R., Dalcanton, J., GHOSTS Team: Detection of a stellar halo in NGC 4244. In: Vazdekis, A., Peletier, R. (eds.) Stellar Populations as Building Blocks of Galaxies, IAU Symposium, vol. 241, pp. 523–524 (2007). doi:10.1017/S1743921307009003, astro-ph/0701704Google Scholar
  72. Simon, J.D., Blitz, L., Cole, A.A., Weinberg, M.D., Cohen, M.: The cosmological significance of high-velocity cloud complex H. Astrophys. J. 640, 270–281 (2006). doi:10.1086/499914, astro-ph/0511542Google Scholar
  73. Slater, C.T., Harding, P., Mihos, J.C.: Removing internal reflections from deep imaging data sets. Publ. Astron. Soc. Pac. 121, 1267–1278 (2009). doi:10.1086/648457, 0909.3320Google Scholar
  74. Streich, D., de Jong, R.S.: Vertical structure of stellar populations in galaxy disks. Highlights Astron. 16, 343–343 (2015). doi:10.1017/S1743921314011156ADSGoogle Scholar
  75. Tal, T., van Dokkum, P.G.: The faint stellar halos of massive red galaxies from stacks of more than 42,000 SDSS LRG images. Astrophys. J. 731, 89 (2011). doi:10.1088/0004-637X/731/2/89, 1102.4330Google Scholar
  76. Thilker, D.A., Bianchi, L., Meurer, G., Gil de Paz, A., Boissier, S., Madore, B.F., Boselli, A., Ferguson, A.M.N., Muñoz-Mateos, J.C., Madsen, G.J., Hameed, S., Overzier, R.A., Forster, K., Friedman, P.G., Martin, D.C., Morrissey, P., Neff, S.G., Schiminovich, D., Seibert, M., Small, T., Wyder, T.K., Donas, J., Heckman, T.M., Lee, Y.W., Milliard, B., Rich, R.M., Szalay, A.S., Welsh, B.Y., Yi, S.K.: A search for extended ultraviolet disk (XUV-Disk) galaxies in the local universe. Astrophys. J. Suppl. Ser. 173, 538–571 (2007). doi:10.1086/523853, 0712.3555Google Scholar
  77. Trujillo, I., Fliri, J.: Beyond 31 mag arcsec2: The frontier of low surface brightness imaging with the largest optical telescopes. Astrophys. J. 823, 123 (2016). doi:10.3847/0004-637X/823/2/123, 1510.04696Google Scholar
  78. van der Burg, R.F.J., Muzzin, A., Hoekstra, H.: The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters. Astron. Astrophys. 590, A20 (2016). doi:10.1051/0004-6361/201628222, 1602.00002Google Scholar
  79. van Dokkum, P.G., Abraham, R., Merritt, A.: First results from the dragonfly telephoto array: the apparent lack of a stellar halo in the massive spiral galaxy M101. Astrophys. J. 782, L24 (2014). doi:10.1088/2041-8205/782/2/L24, 1401.5467Google Scholar
  80. van Dokkum, P.G., Abraham, R., Merritt, A., Zhang, J., Geha, M., Conroy, C.: Forty-seven Milky Way-sized, extremely diffuse galaxies in the coma cluster. Astrophys. J. 798, L45 (2015a). doi:10.1088/2041-8205/798/2/L45, 1410.8141Google Scholar
  81. van Dokkum, P.G., Romanowsky, A.J., Abraham, R., Brodie, J.P., Conroy, C., Geha, M., Merritt, A., Villaume, A., Zhang, J.: Spectroscopic confirmation of the existence of large, diffuse galaxies in the coma cluster. Astrophys. J. 804, L26 (2015b). doi:10.1088/2041-8205/804/1/L26, 1504.03320Google Scholar
  82. van Dokkum, P., Abraham, R., Brodie, J., Conroy, C., Danieli, S., Merritt, A., Mowla, L., Romanowsky, A., Zhang, J.: A high stellar velocity dispersion and ˜100 globular clusters for the ultra-diffuse galaxy dragonfly 44. Astrophys. J. 828, L6 (2016). doi:10.3847/2041-8205/828/1/L6, 1606.06291Google Scholar
  83. Watkins, A.E., Mihos, J.C., Harding, P., Feldmeier, J.J.: Searching for diffuse light in the M96 galaxy group. Astrophys. J. 791, 38 (2014). doi:10.1088/0004-637X/791/1/38, 1406.6982Google Scholar
  84. Yamazaki, R., Loeb, A.: Optical inverse-Compton emission from clusters of galaxies. Mon. Not. R. Astron. Soc. 453, 1990–1998 (2015). doi:10.1093/mnras/stv1757, 1506.07414Google Scholar
  85. Yozin, C., Bekki, K.: The quenching and survival of ultra diffuse galaxies in the Coma cluster. Mon. Not. R. Astron. Soc. 452, 937–943 (2015). doi:10.1093/mnras/stv1073, 1507.05161Google Scholar
  86. Zhang, J., Abraham, R.G., van Dokkum, P.G., Merritt, A.: A giant stellar disk in NGC 2841. Astrophys. J. (2017, submitted)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roberto Abraham
    • 1
    • 2
    Email author
  • Pieter van Dokkum
    • 3
  • Charlie Conroy
    • 4
  • Allison Merritt
    • 3
  • Jielai Zhang
    • 1
    • 2
    • 5
  • Deborah Lokhorst
    • 1
    • 2
  • Shany Danieli
    • 3
    • 4
    • 6
    • 7
  • Lamiya Mowla
    • 3
  1. 1.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  2. 2.Dunlap Institute for Astronomy and AstrophysicsUniversity of TorontoTorontoCanada
  3. 3.Department of AstronomyYale UniversityNew HavenUSA
  4. 4.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  5. 5.Canadian Institute for Theoretical AstrophysicsTorontoCanada
  6. 6.Department of PhysicsYale UniversityNew HavenUSA
  7. 7.Yale Center for Astronomy and AstrophysicsNew HavenUSA

Personalised recommendations