Skip to main content

ePHoRt Project: A Web-Based Platform for Home Motor Rehabilitation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 570))

Abstract

ePHoRt is a project that aims to develop a web-based system for the remote monitoring of rehabilitation exercises in patients after hip replacement surgery. The tool intends to facilitate and enhance the motor recovery, due to the fact that the patients will be able to perform the therapeutic movements at home and at any time. As in any case of rehabilitation program, the time required to recover is significantly diminished when the individual has the opportunity to practice the exercises regularly and frequently. However, the condition of such patients prohibits transportations to and from medical centers and many of them cannot afford a private physiotherapist. Thus, low-cost technologies will be used to develop the platform, with the aim to democratize its access. By taking into account such a limitation, a relevant option to record the patient’s movements is the Kinect motion capture device. The paper describes an experiment that evaluates the validity and accuracy of this visual capture by a comparison to an accelerometer sensor. The results show a significant correlation between both systems and demonstrate that the Kinect is an appropriate tool for the therapeutic purpose of the project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feys, H., De Weerdt, W., Verbeke, G., et al.: Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial. Stroke 35(4), 924–929 (2004)

    Article  Google Scholar 

  2. Cramp, M.C., Greenwood, R.J., Gill, M., et al.: Effectiveness of a community-based low intensity exercise programme for ambulatory stroke survivors. Disabil. Rehabil. 32(3), 239–247 (2010)

    Article  Google Scholar 

  3. Mavroidis, C., Nikitczuk, J., Weinberg, B., et al.: Smart portable rehabilitation devices. J. Neuroeng. Rehabil. 2, 18 (2005). doi:10.1186/1743-0003-2-18

    Article  Google Scholar 

  4. Holden, M.K., Dyar, T.A., Dayan-Cimadoro, L.: Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 36–42 (2007)

    Article  Google Scholar 

  5. Rand, D., Kizony, R., Weiss, P.T.L.: The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J. Neurol. Phys. Ther. 32(4), 155–163 (2008)

    Article  Google Scholar 

  6. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using Kinect. In: Proceedings of the 22nd British Machine Vision Conference. University of Dundee (2011)

    Google Scholar 

  7. Rybarczyk, Y., Rybarczyk, P., Oliveira, N., Vernay, D.: e-ESPOIR: a user-friendly web-based tool for disability evaluation. In: Proceedings of the 11th conference of the Association for the Advancement of Assistive Technology in Europe. Maastricht (2011)

    Google Scholar 

  8. Mendes, P., Rybarczyk, Y., Rybarczyk, P., Vernay, D.: A web-based platform for the therapeutic education of patients with physical disabilities. In: Proceedings of the 6th International Conference of Education, Research and Innovation, Seville (2013)

    Google Scholar 

  9. Rodrigues, F., Rybarczyk, Y., Gonçalves, M.J.: On the use of IT for treating aphasic patients: a 3D web-based solution. In: Proceedings of the 13th International Conference on Applications of Computer Engineering, Lisbon (2014)

    Google Scholar 

  10. Rybarczyk, Y., Fonseca, J.: Tangible interface for a rehabilitation of comprehension in aphasic patients. In: Proceedings of the 11th conference of the Association for the Advancement of Assistive Technology in Europe, Maastricht (2011)

    Google Scholar 

  11. Birns, J., Bhalla, A., Rudd, A.: Telestroke: a concept in practice. Age Ageing 39(6), 666–667 (2010)

    Article  Google Scholar 

  12. Nguyen, K.D., Chen, I.M., Luo, Z., et al.: A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Trans. Mechatron. 16(2), 213–220 (2011)

    Article  Google Scholar 

  13. Patel, S., Park, H., Bonato, P., et al.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21–37 (2012)

    Article  Google Scholar 

  14. Rand, D., Eng, J.J., Tang, P.F., et al.: How active are people with stroke? use of accelerometers to assess physical activity. Stroke 40(1), 163–168 (2009)

    Article  Google Scholar 

  15. Biswas, D., Cranny, A., Maharatna, K.: Body area sensing networks for remote health monitoring. In: Vogiatzaki, E., Krukowski, A. (eds.) Modern Stroke Rehabilitation through e-Health-Based Entertainment, pp. 85–136. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  16. Jovanov, E., Milenkovic, A., Otto, C., De Groen, P.C.: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. Neuroeng. Rehabil. 2, 6–15 (2005)

    Article  Google Scholar 

  17. Strath, S.J., Kaminsky, L.A., Ainsworth, B.E., et al.: Guide to the assessment of physical activity: clinical and research applications - a scientific statement from the American heart association. Circulation 128(20), 2259–2279 (2013)

    Article  Google Scholar 

  18. Vernay, D., Edan, G., Moreau, T., Visy, J.M., Gury, C.: OSE: a single tool for evaluation and follow-up patients with relapsing-remitting multiple sclerosis. Multiple Sclerosis 12, suppl. 1 (2006)

    Google Scholar 

  19. Nilsdotter, A., Bremander, A.: Measures of hip function and symptoms. Arthritis Care Res. 63, 200–207 (2011)

    Article  Google Scholar 

  20. Borg, G.A.: Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14(5), 377–381 (1982)

    Article  Google Scholar 

  21. Gameiro, J., Cardoso, T., Rybarczyk, Y.: Kinect-Sign: teaching sign language to listeners through a game. In: Rybarczyk, Y., et al. (eds.) Innovative and Creative Developments in Multimodal Interaction Systems, pp. 141–159. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Rybarczyk, Y., Santos, J.: Motion integration in direction perception of biological motion. In: Proceedings of the 4th Asian Conference on Vision, Matsue (2006)

    Google Scholar 

  23. Dutta, T.: Evaluation of the kinect sensor for 3-D kinematic measurement in the workplace. Appl. Ergonomics 43, 645–649 (2012)

    Article  Google Scholar 

  24. Brook, G., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  25. Rybarczyk, Y.: 3D markerless motion capture: a low cost approach. In: Proceedings of the 4th World Conference on Information Systems and Technologies, Recife (2016)

    Google Scholar 

  26. Remondino, F., Roditakis, A.: 3D reconstruction of human skeleton from single images or monocular video sequences. In: Proceedings of Joint Pattern Recognition Symposium, Magdeburg (2003)

    Google Scholar 

  27. Krukowski, A., Vogiatzaki, E., Rodríguez, J.M.: Patient health record (PHR) system. In: Maharatna, K., et al. (eds.) Next Generation Remote Healthcare: A Practical System Design Perspective. Springer, New York (2013). Chap. 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Rybarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rybarczyk, Y., Deters, J.K., Gonzalvo, A.A., Gonzalez, M., Villarreal, S., Esparza, D. (2017). ePHoRt Project: A Web-Based Platform for Home Motor Rehabilitation. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-56538-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56538-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56537-8

  • Online ISBN: 978-3-319-56538-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics