Advertisement

Artificial Neural Network for Incremental Data Mining

  • Lydia Nahla Driff
  • Habiba Drias
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 569)

Abstract

In this paper, we present a Health Check process (HC) based on artificial neural network (ANN). Our approach aim is to detect Incremental Apriori deviation (IncA) proposed in previous work used in order to minimize processing time and explore new incoming data only. HC process use germinated infrequent items and generated frequent itemset to run correction according to predicted value. Experiments on datasets show that deviations are detected and IncA generate same results as classic Apriori while saving processing time. Also, experiment results show that HC learning ameliorate with time.

Keywords

Datamining Dynamic database Apriori Incremental technique Machine learning techniques Artificial neural network 

References

  1. 1.
    Żbikowski, R, Dzieliński, A.: Neural approximation: a control perspective. In: Hunt, K.J., Irwin, G.R., Warwick, K.: Neural Network Engineering in Dynamic Control Systems 1995, pp. 1–25. Springer, LondonGoogle Scholar
  2. 2.
    Cule, B., Feremans, L., Goethals, B.: Efficient discovery of sets of co-occurring items in event sequences. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 361–377. Springer, Cham (2016). doi: 10.1007/978-3-319-46128-1_23 CrossRefGoogle Scholar
  3. 3.
    Driff, L.N., Drias, H.: An efficient incremental mining algorithm for dynamic databases. In: International Conference Mining Intelligence and Knowledge Exploration (MIKE) (2016)Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference Very Large Data Bases, VLDB 1994, vol. 1215, September 12, pp. 487–499 (1994)Google Scholar
  5. 5.
    Ni, X.: Research of data mining based on neural networks. World Acad. Sci. Eng. Technol. 39, 381–384 (2008)Google Scholar
  6. 6.
    Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: A method for automatic adjustment of ensemble size in stream data mining. In: 2016 International Joint Conference on Neural Networks (IJCNN), November 3, pp. 9–15. IEEE (2016)Google Scholar
  7. 7.
    Incremental Email classification and suggestion using simple term statisticGoogle Scholar
  8. 8.
    Hebboul, A., Hachouf, F., Boulemnadjel, A.: A new incremental neural network for simultaneous clustering and classification. Neurocomputing 2(169), 89–99 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhao, Q.L., Jiang, Y.H., Xu, M.: Incremental learning by heterogeneous bagging ensemble. In: Cao, L., Zhong, J., Feng, Y. (eds.) ADMA 2010. LNCS (LNAI), vol. 6441, pp. 1–12. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17313-4_1 CrossRefGoogle Scholar
  10. 10.
    Veselý, A.: Neural networks in data mining. Agric. Econ.–Czech 49, 427–431 (2003)Google Scholar
  11. 11.
    Biryulev, C., Yakymiv, Y., Selemonavichus, A.: Research of artificial neural networks usage in data mining and semantic integration. In: 2010 Proceedings of 6th International Conference on Perspective Technologies and Methods in MEMS Design 2010, April 20 (2010)Google Scholar
  12. 12.
    Kumar, A.: Artificial neural networks for data mining. IASRI, Library Avenue, Pusa, New DelhiGoogle Scholar
  13. 13.
    Singh, Y., Chauhan, A.S.: Neural networks in data mining. J. Theor. Appl. Inf. Technol. 5(6), 36–42 (2009)Google Scholar
  14. 14.
    Niknafs, A., Parsa, S.: A neural network approach for updating ranked association rules, based on data envelopment analysis. J. Artif. Intell. 4, 279–287 (2011)CrossRefGoogle Scholar
  15. 15.
    Omlin, C.W., Giles, C.L.: Training second-order recurrent neural networks using hints. In: Proceedings of the 9th International Workshop Machine Learning 2014, June 28, pp. 361–366 (2014)Google Scholar
  16. 16.
    Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, pp. 1058–1066 (2013)Google Scholar
  17. 17.
    Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control, March 9. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Rahman, R.M., Afroz, F.: Comparison of various classification techniques using different data mining tools for diabetes diagnosis. J. Softw. Eng. Appl. 6(03), 85 (2013)CrossRefGoogle Scholar
  19. 19.
    Jeatrakul, P., Wong, K.W.: Comparing the performance of different neural networks for binary classification problems. In: Eighth International Symposium on Natural Language Processing, SNLP 2009, October 20, pp. 111–115. IEEE (2009)Google Scholar
  20. 20.
    Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques, June 9. Elsevier (2011)Google Scholar
  21. 21.
    Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2, 1–3 (2004)Google Scholar
  22. 22.
    Specht, D.F.: Probabilistic neural networks for classification, mapping, or associative memory. In: IEEE International Conference on Neural Networks, July 24, pp. 525–532. IEEE (1988)Google Scholar
  23. 23.
    Thearling, K.: An introduction to data mining: discovering hidden value in your data warehouse (2005). Accessed 18 August 2000Google Scholar
  24. 24.
    Zhao, Y.: Association Rule Mining with R. University of Canberra (2016). http://www.rdatamining.com/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory (LRIA), Department of Computer ScienceUSTHBBab EzzouarAlgeria

Personalised recommendations